首页|森林旅游地景观形象感知研究——以塞罕坝国家森林公园为例

森林旅游地景观形象感知研究——以塞罕坝国家森林公园为例

扫码查看
旅游网络照片是旅游者关于旅游地形象感知的视觉化表达,通过分析游客上传的网络景观照片可以了解游客对森林旅游地景观形象感知并对关键景观要素进行精准化管理与保护.本研究以塞罕坝国家森林公园为例,选取旅游网站的1 656张景观照片作为研究对象,从认知和情感2个方面分析了塞罕坝旅游景观的形象感知.利用图像语义分割提取景观要素,对景观要素进行聚类分析和景观格局分析,利用DeepSentiBank和HowNet情感词典进行情感研究,并选取景观格局指标阐述了不同照片产生情感偏差的原因.研究结果表明,天空是旅游者关注的首要景观要素,其次是云彩、道路、森林;感知到的旅游景观分为植物景观、天气天象景观、水域景观和地物景观4种类型;照片呈现的情感总体表现为正面和中性情感,其中植物景观正向情感比例最高,地物景观的负面情感比例最高;斑块数量(NP)、斑块密度(PD)、景观形状指数(LSI)与情感值呈现极显著负相关关系,最大斑块指数与情感值呈现显著正相关关系.
Study on landscape image perception of forest tourism destination——Taking Saihanba National Forest Park for example
Tourism online photos were the visual expression of tourists perception of tourist destination image.Through analyzing the landscape photos uploaded by tourists,tourists perception of forest tourist destination landscape image could be understood and key land-scape elements could be protected and restored.Taking Saihanba National Forest Park as an example,this paper selected 1 656 landscape photos from tourism websites as the research object,and analyzed the perception of natural tourism landscape from two aspects of cogni-tion and emotion.Image semantic segmentation was used to extract landscape elements and cluster analysis,landscape pattern analysis were carried out on landscape elements.Used DeepSentiBank and HowNet sentiment dictionary to conduct sentiment research,and select-ed landscape pattern indicators to explain the reasons for the emotional bias of different pho-tos.The results showed that sky was the most important landscape element that tourists pay attention to,followed by clouds,roads and forests.The perceived tourist landscape could be divided into four types:plant landscape,weather and sky landscape,water landscape and ground object landscape.The emotion presented in the photos were positive and neutral,with the highest proportion of positive emotion in plant landscape and the highest proportion of negative emotion in ground object landscape.There was a significant negative correlation between number of patches,patch density,landscape shape index and emotion value,and a significant positive correlation between maximum patch index and emotion value.

image perceptiondeep learninglandscape photoslandscape patternSaihanba

伏学习、马识途、李娟、聂蓓捷、和家欢、杨会娟

展开 >

河北农业大学园林与旅游学院,河北保定 071000

南开大学商学院,天津 300071

河北省木兰围场国有林场,河北承德 068456

河北省城市森林健康技术创新中心,河北保定 071000

展开 >

形象感知 深度学习 景观照片 景观格局 塞罕坝

河北省社会科学基金项目国家社科基金项目2022-2023年河北农业大学创新创业项目

HB23GL03021BSH060s202310086011

2024

林业与生态科学
河北农业大学

林业与生态科学

CSTPCD
影响因子:0.299
ISSN:2096-4749
年,卷(期):2024.39(1)
  • 12