首页|基于改进Unet的多目标非侵入式负荷监测

基于改进Unet的多目标非侵入式负荷监测

扫码查看
非侵入式负荷监测被认为是能源监测和管理中一个关键问题,针对传统NILM模型对多状态电器训练准确率较低且只能对单一电器进行训练问题,文章提出基于改进Unet多目标非侵入式负荷监测模型.模型在Unet基础上引入卷积块注意力模块(CBAM),CBAM结合通道和空间注意力,增强模型提取特征能力,通过结合残差连接,将激活函数ReLU替换为GELU,防止网络退化和梯度爆炸,利用神经网络不同通道特征提取能力实现多通道输出,对UK-DALE数据集上使用最多5个电器同时训练.相比于现有NILM模型,该模型在更低网络参数量下,可以实现多目标监测且有较高准确率.
Multi-objective Non-intrusive Load Monitoring Based on Improved Unet
Non-intrusive load monitoring is considered to be a key issue in energy monitoring and manage-ment.Aiming at the problem that the traditional NILM model has low accuracy in training multi-applicances can only train a single appliance.A multi-objective non-intrusive load monitoring model based on improved Unet was proposed,Firstly,a convolutional block attention module on the basis of Unet(CBAM)was intro-duced,CBAM combined channel and spatial attention to enhance the feature extraction ability of the model.Then the activation function ReLU was replaced by GELU by combining the residual connection to prevent network degradation and gradient explosion.Meanwhile the multi-channel output was realized by utilizing the feature extraction ability of different channels of the neural network,and the five appliances that were used the most on the UK-DALE dataset were trained at the same time.Finally,the experimental results showed that the model in this paper could realize multi-objective monitoring and had high accuracy with low-er number of network parameters compared to the other existing NILM models.

non-intrusive load monitoringUnetconvolutional block attention moduleresidual connectiondeep learning

程志友、张帅

展开 >

安徽大学 互联网学院,安徽 合肥 230039

教育部电能质量工程研究中心(安徽大学),安徽 合肥 230601

非侵入式负荷监测 Unet 卷积块注意力模块 残差连接 深度学习

国家自然科学基金安徽省自然科学基金

616720322108085QE237

2024

淮北师范大学学报(自然科学版)
淮北师范大学

淮北师范大学学报(自然科学版)

影响因子:0.222
ISSN:2095-0691
年,卷(期):2024.45(2)
  • 1
  • 18