首页|基于FG-YOLOv7-tiny算法的耐张线夹X光图像压接缺陷检测

基于FG-YOLOv7-tiny算法的耐张线夹X光图像压接缺陷检测

扫码查看
为保证输电线路的安全可靠运行,电力巡检的重要任务是耐张线夹压接缺陷检测.为此,提出了快速幽灵YOLOv7-tiny(faster neural networks ghost convolution-you only look once version 7-tiny,FG-YOLOv7-tiny)算法进行耐张线夹压接缺陷检测.首先,构建包含 5 类常见压接缺陷的耐张线夹X光图像数据集;其次,使用快速神经网络(faster neural networks,FasterNet)替代YOLOv7-tiny的高效聚合网络(efficient layer aggregation networks,ELAN)以减小模型大小;最后,使用幽灵空间金字塔池化交叉阶段部分连接网络(ghost spatial pyramid pooling cross stage partial connection networks,GhostSPPCSPC)替换YOLOv7-tiny使用的空间金字塔池化交叉阶段部分连接网络以提升检测精度.实验结果表明,FG-YOLOv7-tiny算法的精度、平均精度均值分别达到 91.30%、94.28%,相比于原始YOLOv7-tiny算法分别提升了 3.99%、1.59%;模型大小为 22.25 MB;检测速度达到 172.41 帧/s,能满足实时检测的要求.因此,FG-YOLOv7-tiny算法提升了检测精度,可实现耐张线夹压接缺陷的有效检测,并满足边缘设备部署的要求.
Detection of Crimping Defects in Strain Clamp X-ray Images Based on FG-YOLOv7-tiny Algorithm
To ensure the safe and reliable operation of transmission lines,the detection of crimp defects in strain clamps had become an important task of power inspection.To this end,a faster neural networks ghost convolution-you only look once version 7-tiny(FG-YOLOv7-tiny)algorithm was proposed for strain clamp crimp defect detection.First,a strain-clamp X-ray image dataset containing five common crimp defects was constructed.Secondly,faster neural networks(FasterNet)were used to replace the efficient layer aggregation networks(ELAN)of YOLOv7-tiny to reduce the model size.Finally,the ghost spatial pyramid pooling cross stage partial connection networks(GhostSPPCSPC)was used to replace the spatial pyramid pooling cross stage partial connection networks used by YOLOv7-tiny to improve the detection accuracy.The experimental results showed that the accuracy and average accuracy of the FG-YOLOv7-tiny algorithm reached 91.30%and 94.28%,respectively,which were 3.99%and 1.59%higher than the original YOLOv7-tiny algorithm.The model size was 22.25 MB,and the detection speed reached 172.41 frames/s,which satisfied the requirements of real-time detection.Therefore,the FG-YOLOv7-tiny algorithm improved the detection accuracy,which could effectively detect the crimping defects of strain clamps and meet the requirements of edge device deployment.

YOLOv7-tinyFasterNetstrain clampdefect detectionX-ray image

杨宇、高林、唐永欣、王志、廖明艳

展开 >

湖北民族大学 智能科学与工程学院,湖北 恩施 445000

重庆工商大学 数学与统计学院,重庆 400000

恩施州生产力促进中心,湖北 恩施 445000

YOLOv7-tiny 快速神经网络 耐张线夹 缺陷检测 X光图像

国家自然科学基金项目国家自然科学基金项目湖北省高等学校省级教学研究项目

61562025619620192017387

2024

湖北民族大学学报(自然科学版)
湖北民族学院

湖北民族大学学报(自然科学版)

影响因子:0.458
ISSN:2096-7594
年,卷(期):2024.42(1)
  • 19