首页|基于IDBO-LSSVM的输电线路覆冰厚度预测模型

基于IDBO-LSSVM的输电线路覆冰厚度预测模型

扫码查看
针对输电线路受多种气象因素影响导致覆冰厚度预测精度低的问题,提出基于改进蜣螂优化(improved dung beetle optimizer,IDBO)算法优化最小二乘支持向量机(least square support vector machine,LSSVM)的输电线路覆冰厚度预测模型.首先,使用皮尔逊相关系数(Pearson correlation coefficient,PCC)计算输电线路覆冰厚度与不同气象因素之间的相关性,选择具有高相关性的气象因素以确定输入变量;其次,通过引入Halton序列、Levy飞行策略和T分布扰动来改进蜣螂优化(dung beetle optimizer,DBO)算法;最后,使用IDBO算法寻优LSSVM参数:调节因子、核函数宽度,提高模型预测精度.以某地输电线路历史监测数据为样本,将IDBO-LSSVM的输电线路预测结果与其他 7 种预测模型进行比较,发现平均绝对误差分别降低了约 27%、36%、25%、23%、24%、44%和 39%.该研究证实了基于IDBO-LSSVM的输电线路覆冰厚度预测模型可以有效提高预测精度.
Transmission Line Ice Cover Thickness Prediction Model Based on IDBO-LSSVM
Aiming at the problem of low accuracy of ice cover thickness prediction due to the influence of multiple meteorological factors on transmission line ice cover,a transmission line ice cover thickness prediction model based on improved dung beetle optimizer(IDBO)-least square support vector machine(LSSVM)was proposed.Firstly,the Pearson correlation coefficient(PCC)was used to calculate the correlation between the ice thickness of transmission lines and different meteorological factors.High correlation meteorological factors were selected to determine the input variables.Secondly,the dung beetle optimizer(DBO)was improved by introducing Halton sequences,Levy flight strategies,and T-distribution perturbations.Finally,IDBO was used to optimize the parameters of LSSVM,including the adjustment factor and kernel function width,further improving the prediction accuracy of the model.When the prediction results of IDBO-LSSVM were compared with other seven prediction models using the historical monitoring data of a transmission line in a certain region as a sample,the average absolute errors were reduced by about 27%,36%,25%,23%,24%,44%and 39%,respectively.The results indicated that the transmission line ice cover thickness prediction model based on IDBO-LSSVM could effectively improve the prediction accuracy.

transmission linesice cover thickness predictionPearson correlation coefficient(PCC)analysisimproved dung beetle optimization algorithm(IDBO)least squares support vector machine(LSSVM)

陈静、李荣浩

展开 >

安徽理工大学 电气与信息工程学院,安徽 淮南 232001

输电线路 覆冰厚度预测 皮尔逊相关系数分析 改进蜣螂优化算法 最小二乘支持向量机

2024

湖北民族大学学报(自然科学版)
湖北民族学院

湖北民族大学学报(自然科学版)

影响因子:0.458
ISSN:2096-7594
年,卷(期):2024.42(3)