首页|基于注意力机制的多任务番茄叶片病害识别方法

基于注意力机制的多任务番茄叶片病害识别方法

扫码查看
为解决传统方法在识别番茄叶片病害方面准确率低且难以应对复杂环境的问题,本文提出了基于注意力机制的多任务番茄叶片病害识别方法(Attention-based multi-task tomato leaf disease recognition method,AMTDR).首先,采用了ResNet18 作为骨干网络,并在每个残差块后引入了卷积注意力模块(Convolutional block attention,CBA).其次,设计了 1 个多任务结构,该结构包括病害识别和病害程度 2 个分支.病害识别分支用于准确识别番茄叶片的病害类型,而病害程度分支则用于精确评估病害的严重程度.在每个分支中,引入了卷积三元组注意力模块(Convolutional triplet attention,CTA),以增强对病害特征的表征能力.结果显示,所提出的AMTDR方法在复杂环境下的 11 种番茄病害数据集中的准确率和F1 分数均达到了 98.54%.相较于ResNet50 网络,准确率和F1 分数上分别提高了 1.27%和 1.25%,同时参数量和FLOPs仅为ResNet50 的48.72%和 44.30%.本文提出的AMTDR方法能够有效识别复杂环境下的番茄叶片病害,为农业病害的识别提供了重要的参考价值.
Attention-based multi-task method for recognition of tomato leaf disease
To address the challenges of low accuracy and difficulty in handling complex environments in tomato leaf disease recognition using traditional methods,this paper proposed an Attention-based Multi-task Tomato Leaf Disease Recognition Method(AMTDR).Firstly,ResNet18 was adopted as the backbone network,with Convolutional Block Attention(CBA)modules introduced after each residual block.Secondly,a multi-task structure was designed with disease recognition and disease severity branches.The disease recognition branch accurately identified the type of tomato leaf disease,while the disease severity branch assessed the severity of the disease.In each branch,Convolutional Triplet Attention(CTA)modules were introduced to enhance the representation capability of disease features.Experimental results demonstrated that the proposed AMTDR method achieved an accuracy and F1 score of 98.54%on a dataset containing 11 types of tomato diseases in complex environments.Compared with the ResNet50 network,the accuracy and F1-score were improved by 1.27%and 1.25%,respectively,while the parameter count and FLOPs were only 48.72%and 44.30%of ResNet50.The AMTDR method effectively identified tomato leaf diseases in complex environments,providing significant value for agricultural disease recognition.

disease recognitiondisease assessmentattention mechanismresidual networkdeep learning

余富强、王斌成、郭娜炜、魏弋杰、刘博

展开 >

河北农业大学 信息科学与技术学院,河北 保定 071001

河北农业大学 河北省农业大数据重点实验室,河北 保定 071001

河北省物联网区块链融合重点实验室,河北 石家庄 050035

病害识别 病害评估 注意力机制 残差网络 深度学习

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)