首页|融合图神经网络、门控循环单元与注意力机制的分子性质预测方法

融合图神经网络、门控循环单元与注意力机制的分子性质预测方法

扫码查看
分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意力机制的网络模型(Gated recurrent unit-attention-convolutional graph neural networks,GAGCN)用于分子性质的预测。该模型通过图神经网络(Graph neural network,GNN)对分子图进行表示学习,利用节点之间的连接和信息传播来捕捉分子的结构特征;使用门控循环单元(Gated recurrent unit,GRU)对分子序列进行建模,从而捕捉分子序列中的时序信息,通过门控机制自适应地选择保留或丢弃序列中的信息。最后通过注意力机制自适应地学习不同特征之间的权重,将GNN和GRU进行融合,从而使模型可以充分利用分子的结构和序列信息,以提高分子性质预测的准确性。试验结果表明该模型对于LogP的预测精度MSE、MAE和R2 分别达到了 0。001 0、0。011 6 和 0。999 3。本文提出的模型为新农药、新兽药的研发提供了技术支持和参考。
A molecular property prediction method fusing graph neural networks,gated cyclic units and attention mechanisms
Molecular property prediction has a wide range of applications in drug research and development.Although graph neural networks and other methods have been applied to predict molecular properties,there are still limitations in processing large-scale molecular maps and information dissemination.To solve this problem,a network model was constructed fusing graph neural network(GNN),gated circulation unit(GRU)and attention mechanism(GAGCN)in this paper to predict molecular properties.The model used GNN to represent and learn molecular graphs,and the connections between nodes and information propagation was used to capture molecular structural features.The GRU was used to model the molecular sequence,so that the timing information in the molecular sequence was captured,and the information in the sequence was adapted to retain or discard through the gating mechanism.Finally,the attention mechanism was used to learn the weights between different features,and the GNN and GRU were integrated,so that the model can make full use of the molecular structure and sequence information to improve the accuracy of molecular property prediction.The experimental results showed that the prediction accuracy of MSE,MAE and R2 for LogP attributes were 0.0010,0.0116 and 0.9993,respectively.The model proposed in this paper provides technical support and reference for the research and development of new pesticides and new veterinary drugs.

drug developmentmolecular property predictiongraph neural networkgated loop unitattention mechanism

随海燕、袁洪波、周焕笛、赵欢、霍静倩、程曼

展开 >

河北农业大学 机电工程学院,河北 保定 071001

沧州渤海新区黄骅市农业农村发展局,河北 沧州 062550

河北农业大学 植物保护学院,河北 保定 071001

药物研发 分子性质预测 图神经网络 门控循环单元 注意力机制

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)