首页|基于多目标遗传规划的农作物非生物胁迫抗逆关键基因挖掘方法研究

基于多目标遗传规划的农作物非生物胁迫抗逆关键基因挖掘方法研究

扫码查看
为了减少高维基因中的无效基因,挖掘农作物非生物胁迫抗逆关键基因,本文提出了一种基于多目标遗传规划的农作物非生物胁迫抗逆关键基因挖掘方法。将遗传规划算法(Genetic programming,GP)和多目标优化算法NSGA-II结合,提出一种基于多目标遗传规划的高维数据特征选择和分类方法(MONSGP)。该方法以召回率、精确率和特征数量为优化目标,获得最优Pareto解集,使用最优分类器选择策略从最优解集中选择出性能最好并且包含少量特征的分类器作为最优分类器。在 9 个NCBI高维基因数据集的实验表明,与标准GP分类算法和 3 种最新的GP分类算法相比,MONSGP能以更少的特征数量获得更好的分类性能;GO功能富集分析验证MONSGP筛选出的基因跟非生物胁迫相关且具有生物学意义。
Research on mining key genes of abiotic stress resistance in crops based on multi-objective genetic programming
In order to reduce the invalid genes in high-dimensional genes and mine the key genes for abiotic stress resistance of crops,a multi-objective genetic programming based method was proposed to mine the key genes for abiotic stress resistance of crops.A method for feature selection and classification of high-dimensional data based on multi-objective genetic programming(MONSGP)was proposed by combining genetic programming(GP)and multi-objective optimization algorithms NSGA-II.The method aimed to optimize recall,accuracy,and number of features to obtain the optimal Pareto solution set.The optimal classifier selection strategy was used to select the classifier with the best performance and a small number of features from the optimal solution set as the optimal classifier.Experiments on 9 NCBI high-dimensional gene datasets have showed that MONSGP can achieve better classification performance with fewer features compared to standard GP classification algorithms and three latest GP classification algorithms.GO functional enrichment analysis confirmed that the genes screened by MONSGP were related to abiotic stress and had biological significance.

abiotic stresskey genesgenetic programmingmulti-objective optimizationenrichment analysis

孙龙君、聂庆浩、李佳祎、牛佳欣、孟文洋、马建斌

展开 >

河北农业大学 信息科学与技术学院/河北农业大数据重点实验室,河北 保定 071001

非生物胁迫 关键基因 遗传规划 多目标优化 富集分析

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)