首页|基于CBAM1,2,3-YOLOv7的单增李斯特致病菌识别

基于CBAM1,2,3-YOLOv7的单增李斯特致病菌识别

扫码查看
食源性致病菌是冷藏食品威胁人类健康的主要病原菌之一,是食品卫生微生物检验中的必查项目。细菌识别的传统方法需要在细菌培养的国标时间到达后由肉眼观察并计数,观察者极易因眼睛疲劳导致错误计数,费时费力;而且传统方法需要特殊试剂进行细菌检测,成本较高,需要专业知识进行操作。为快速准确检测细菌小目标,本文提出一种新型食源性致病菌检测方法——CBAM1,2,3-YOLOv7,首先利用工业照相机代替显微镜拍摄图像,并将捕捉到的单增李斯特菌图像输入到优化后的模型中进行识别,该模型在YOLOv7 模型的基础上加入CBAM注意力机制,使模型在通道域上更加敏感,增强了特征提取能力。为增强对比性,将同样的图像分别输入到Faster RCNN、YOLOv4、YOLOv5、YOLOv7 深度学习模型中进行训练。优化后的模型较YOLOv7平均准确率提升了 0。52 个百分点、召回率提升了 0。27 个百分点。试验证明CBAM1,2,3-YOLOv7 算法可以实现对单增李斯特菌的高精度识别,对其他食源性致病菌的快速检测具有指导意义和参考价值。
Identification of Listeria monocytogenes based on CBAM1,2,3-YOLOv7
Foodborne pathogenic bacteria is one of the main pathogenic bacteria that threaten human health in refrigerated food,and it is a must-check item in food hygiene microbiology inspection.The traditional method of bacterial identification needs to be observe and counte by naked eyes after bacterial culture for national standard time,which is time-consuming and laborious because the observer is easy to get wrong counting due to eye fatigue.Moreover,traditional methods require special reagents for bacterial detection,which is costly and requires specialized knowledge to operate.To quickly and accurately detect small bacterial targets,this article proposed a new method for detecting foodborne pathogens-CBAM1,2,3-YOLOv7.Firstly,an industrial camera was used to replace a microscope to capture images,and the captured images of Listeria monocytogenes were inputted into the optimized model for recognition.This model added CBAM attention mechanism to the YOLOv7 model,making the model more sensitive in the channel domain and enhancing feature extraction ability.To enhance contrast,training was conducted on deep learning models,including Faster RCNN,YOLOv4,YOLOv5,and YOLOv7.Compared with YOLOv7 model,the optimized model improved the accurate mean value by 0.52%and the recall rate by 0.27%.The results suggested that CBAM1,2,3-YOLOv7 algorithm realized the high-precision identification of Listeria monocytogenes,which has guiding significance and reference value for the rapid detection of other foodborne pathogens.

Deep learningTarget detectionYOLOFaster-RCNNFoodborne pathogenic bacteriaMechanism of attention

李嘉萌、李志蕊、苑宁、王娟

展开 >

河北农业大学机电工程学院,河北 保定 071001

河北省畜禽养殖智能装备与新能源利用重点实验室,河北 保定 071001

河北农业大学食品科技学院,河北 保定 071001

河北农业大学理工系,河北 沧州 061100

展开 >

深度学习 目标检测 YOLO Faster RCNN 食源性致病菌 注意力机制

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)