首页|基于机器视觉的黄瓜新鲜度检测方法研究

基于机器视觉的黄瓜新鲜度检测方法研究

扫码查看
人工挑拣黄瓜费时费力,黄瓜自动挑拣可大大提高黄瓜的生产效率,目前还没有看到黄瓜自动挑拣过程中准确检测其果实新鲜度方面的有效方法。本研究提出一种基于机器视觉的黄瓜新鲜度检测方法,采用RGB图像分析法提取颜色特征,利用连通区域标记法计算瓜刺个数特征,借助灰度共生矩阵法提取纹理特征,利用支持向量机算法对黄瓜新鲜度进行了分类识别。在宁阳大刺黄瓜 320 个图像数据上的平均识别准确率达到98。43%,表明本研究提出的黄瓜新鲜度检测方法是有效的。
Research on the detection method of cucumber freshness based on machine vision
Manually picking cucumbers is time-consuming and labor-intensive.Automatic cucumber picking can greatly improve the production efficiency.However,few effective methods have been found so far to accurately detect the freshness of cucumber fruits during the automatic picking process.This paper proposed a cucumber freshness detection method based on machine vision.The method used RGB image analysis to extract color features,connected area labeling to count the number of spines,applied gray-level co-occurrence matrix to extract texture features and used support vector machine algorithm to recognize and classify freshness.The average recognition accuracy on 320 images of Ningyang cucumbers reached 98.43%,suggesting that the cucumber freshness detection method proposed in this paper is effective.

machine visioncucumber pickingfeature extractionSVM

于聪、张昱婷、滕桂法

展开 >

河北农业大学信息科学与技术学院,河北 保定 071001

河北省农业大数据重点实验室,河北 保定 071001

河北省数字农业产业技术研究院,河北 保定 071001

机器视觉 黄瓜分挑 特征提取 SVM

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)