首页|一种面向蔬菜生产知识服务的主动推荐方法

一种面向蔬菜生产知识服务的主动推荐方法

扫码查看
针对蔬菜生产中品种选择、病虫害防治、田间管理等环节知识需求复杂且动态的特点,提出一种面向蔬菜生产知识服务的主动推荐方法,以期为个性化农业管理提供有效支持。将知识图谱构建作为目标,通过结合自注意力机制的动态用户兴趣建模、分层嵌入技术表示和图神经网络(GNN)多跳推理机制,逐层筛选和聚合复杂关系信息,实现蔬菜生产知识服务的精准推荐。实验结果表明,所提出的方法在推荐准确率和性能指标上均显著优于现有先进模型,能够适应蔬菜生产中不同环节的动态知识需求。本研究为个性化农业管理和智能决策提供了一种高效解决方案,为农业知识服务推荐方法的研究提供了新的思路与方法。
An active recommendation method for Vegetable production knowledge services
Aiming at the complex and dynamic characteristics of knowledge requirements in the stages of vegetable production,such as variety selection,pest and disease control,and field management,an active recommendation method for vegetable production knowledge services is proposed to provide effective support for personalized agricultural management.Taking the construction of knowledge graph as the goal,the dynamic user interest modeling based on self-attention mechanism,hierarchical embedding technology representation,and multi-hop reasoning mechanism of graph neural network(GNN)are combined to screen and aggregate complex relationship information layer by layer to achieve accurate recommendation of vegetable production knowledge services.The experimental results show that the proposed method is significantly superior to the existing advanced models in terms of recommendation accuracy and performance indicators,and can adapt to the dynamic knowledge requirements of different stages of vegetable production.This study provided an efficient solution for personalized agricultural management and intelligent decision-making,and new ideas and methods for the research of agricultural knowledge service recommendation methods.

vegetable productionpersonalized recommendationGNNknowledge graphhierarchical embedding technology

刘畅、王春山、缪祎晟、朱华吉、郭旺、吴华瑞

展开 >

国家农业信息化工程技术研究中心,北京 100097

北京市农林科学院信息技术研究中心,北京 100097

农业农村部数字乡村技术重点实验室,北京 100097

农业遥感应用河北省工程研究中心,河北 保定 071001

展开 >

蔬菜生产 个性化推荐 图神经网络 知识图谱 分层嵌入技术

2024

河北农业大学学报
河北农业大学

河北农业大学学报

CSTPCD北大核心
影响因子:0.475
ISSN:1000-1573
年,卷(期):2024.47(6)