首页|中昆仑山北坡水汽含量的计算及其特征分析

中昆仑山北坡水汽含量的计算及其特征分析

扫码查看
干旱区水汽变化影响区域水资源系统的结构和演变,基于2020年1月—2022年12月中昆仑山北坡地区4个地基GPS遥感大气可降水量资料(GPS-PWV)、2个探空站观测资料和108个地面气象观测站逐时水汽压资料,利用一元线性拟合方法建立了适用于中昆仑山北坡地区的大气水汽含量(W-PWV)和地面水汽压计算模型(W-e)并对计算结果进行评估,分析了中昆仑山北坡地区东段、中段、西段W-PWV的时空分布特征及降水开始时刻与W-PWV峰值的关系.结果表明:(1)W-PWV年平均高值区位于研究区西段,中段次之,东段沙漠南缘W-PWV最低.海拔高度大于1500m测站W-PWV随高度升高逐渐减少.夏季地面气象观测站平均W-PWV是春、秋季的2倍左右;(2)研究区W-PWV月变化具有单峰型特征,其中海拔高度1300~1500 m测站的W-PWV在7月和8月达到峰值,其余测站的W-PWV在8月达到峰值,海拔低于2000m和高于2000m测站W-PWV分别在夜间和白天维持较高值;(3)水汽含量模型计算的测站W-PWV与降水开始时刻有较好的对应关系,降水前各站W-PWV均存在不同程度跃变过程,降水过程前1~2 h内W-PWV峰值达到测站W-PWV月平均值的1.5倍以上.
Calculation and characteristic analysis of water vapor content in the north slope of the Middle Kunlun Mountains
The water vapor changes in arid areas could affect the structure and evolution of water resource systems in their surrounding ar-eas.Based on the precipitable atmospheric water vapor(GPS-PWV)of 4 ground-based GPS stations,the observation data of 2 sounding sta-tions and the hourly surface pressure water vapor data of 108 meteorological observation stations on the north slope of the Middle Kunlun Mountains from January 2020 to December 2022,this study established the atmospheric water vapor content and surface water vapor pres-sure(W-e)model suitable for the north slope of the Middle Kunlun Mountains using the unary linear fitting method.The results of water va-por content calculated by this model were verified.Then we analyzed the distribution characteristics of atmospheric water vapor content in the western section,the middle section,and the eastern section of the study area,as well as the relationship between the beginning time of precipitation and the W-PWV peak value.The results show that:(1)The annual mean W-PWV is largest in the western section of the study area,followed by the middle section,and the smallest in the eastern section which located in the southern edge of the desert.The W-PWV of the stations with altitude greater than 1500 m gradually decrease with altitude increasing.The average W-PWV of each meteorological ob-servation station in summer is about twice than that in spring and autumn.(2)The monthly variation of W-PWV shows a unimodal distribu-tion characteristic.The W-PWV of the stations with an altitude higher than 1300 m but lower than 1500 m reached its peak in July and Au-gust,while that of the other stations reached its peak in August.The W-PWV of stations with an altitude below 2000 m and above 2000 m maintained a high value at night and during the day,respectively,which may be related to the thermal difference between mountain and ba-sin from daytime to nighttime.(3)There is a good correspondence between the W-PWV calculated by W-e model and the beginning time of precipitation.Before precipitation,the W-PWV of each station is jumped varying degrees,and the peak value of W-PWV within 1-2 h be-fore the precipitation is more than 1.5 times of the monthly average value of W-PWV.

north slope of the Middle Kunlun Mountainswater vapor contentground-based GPSthe calculation model of water vapor con-tent

刘晶、杨莲梅、李俊江、郭玉琳、李阿桥

展开 >

中国气象局乌鲁木齐沙漠气象研究所,乌鲁木齐 830002

新疆云降水物理与云水资源开发实验室,乌鲁木齐 830002

西天山云降水物理野外科学观测基地,乌鲁木齐 830002

新疆气象信息中心,乌鲁木齐 830002

新疆维吾尔自治区气候中心,乌鲁木齐 830002

展开 >

中昆仑山北坡 水汽含量 地基GPS 水汽含量计算模型

新疆气象局引导性计划项目新疆维吾尔自治区自然科学基金项目"天山英才"培养计划项目新疆维吾尔自治区自然科学基金项目新疆金锋华云发展基金项目

YD2023012023D01B062022TSY-CLJ00032022D01D86Hyj202307

2024

暴雨灾害
中国气象局武汉暴雨研究所

暴雨灾害

CSTPCD
影响因子:1.533
ISSN:1004-9045
年,卷(期):2024.43(2)
  • 18