首页|变系数模型的稳健变量选择与结构识别

变系数模型的稳健变量选择与结构识别

扫码查看
研究了稳健回归下变系数模型的变量选择和模型结构识别问题.利用B样条基函数近似非参数系数函数,建立自适应组Lasso双惩罚函数选择变系数模型中的重要变量并且识别具有常数效应的协变量,同时估计未知的非参数系数函数.在一定条件下,证明了所提出的惩罚估计量具有相合性和稀疏性.通过数值模拟验证所提方法的有限样本性质.
Robust variable selection and structure identification for varying coefficient models
This paper investigated the problem of variable selection and structure identification in varying coefficient model under robust regression.By using B-spline basis function to approximate the non-parametric part,it proposed a combined penalization procedure to select the significant variables,detect the true structure of the model and estimate the unknown regression coefficients simultaneously.It proved that under certain conditions,the consistency and sparsity of the proposed procedure are valid.In addition,it illustrated finite sample performances of the proposed method through some simulation studies.

varying coefficient modelsrobust regressionadaptive group LassoVariable selectionsparsity

王照良、张素婷

展开 >

河南理工大学 数学与信息科学学院,河南 焦作 454000

变系数模型 稳健回归 自适应组Lasso 变量选择 稀疏性

教育部人文社会科学研究项目河南理工大学博士基金

20YJC910010B2020-37

2024

湖北师范大学学报(自然科学版)
湖北师范学院

湖北师范大学学报(自然科学版)

影响因子:0.376
ISSN:2096-3149
年,卷(期):2024.44(1)
  • 15