首页|一种基于YOLOv5s的绝缘子自爆轻量化检测方法

一种基于YOLOv5s的绝缘子自爆轻量化检测方法

扫码查看
绝缘子在电力线路中发挥关键作用,对保障电力系统的安全可靠至关重要.由于绝缘子易受恶劣天气影响产生故障,需定期开展巡检工作.随着人工智能的发展,借助无人机的动态巡检方式逐渐成为热门.通过航拍能更加便利获取绝缘子图像,但也存在图像目标小且易被遮挡的不足,给绝缘子故障图像识别算法带来了挑战.并且实现绝缘子动态巡检必须充分考虑精准率与实时性的平衡.因此,提出一种基于YOLOv5s的轻量化绝缘子自爆检测方法.通过改进损失函数,优化检测模型,提高巡检检测准确率,实现绝缘子自爆快速精准动态检测.
A lightweight detection method for insulator self-explosion based on YOLOv5s
Insulators play a key role in power lines and are vital to ensure the safety and reliability of the power system.Due to their vulnerability to adverse weather conditions,insulators are required to carry out regular inspection.With the advancement of artificial intelligence,the use of unmanned aerial vehicles(drones)for dynamic inspections has become increasingly popular.It can use aerial photography to obtain insulator images in a more convenient way.However,there exist some challenges for use algorithms to recognize fault insulator images.For instance,small targets are difficult to be recognized and easy to be cover.Moreover,dynamic insulator inspections needs to achieve a balance between accuracy and real-time capabilities.Therefore,this paper proposes a detection method of self-explosion of lightweight insulators based on YOLOv5,which can increase realize rapid and accurate dynamic detection of insulator self-explosion by improving the loss function,optimizing the detection model,and enhancing inspection accuracy.

insulatorYOLOv5deep learningloss functionlightweight

程仲汉、俞劭凯、赖怡欣

展开 >

福建警察学院 计算机与信息安全管理系,福建 福州 350007

绝缘子 YOLOv5s 深度学习 损失函数 轻量化

福建省高等学校产学合作项目福建省中青年教师教育科研项目(科技类)

2020H6024JAT200379

2024

湖北师范大学学报(自然科学版)
湖北师范学院

湖北师范大学学报(自然科学版)

影响因子:0.376
ISSN:2096-3149
年,卷(期):2024.44(2)
  • 15