首页|基于X12季节调整法与神经网络的光伏出力预测方法

基于X12季节调整法与神经网络的光伏出力预测方法

扫码查看
精准的光伏出力预测是光伏并网规划的基础,对光伏消纳与电网安全经济运行具有重要影响,为此提出了一种基于X12 季节调整法与神经网络的光伏出力预测方法.首先利用X12 季节调整法将光伏出力序列分解为趋势分量、季节周期分量和随机分量;再基于BP神经网络的方法对各个分量进行预测,经组合得到最终结果;最后选取江西省会昌县光伏的实际出力序列作为分析对象,利用所提出的预测方法进行预测结果表明,该方法能够达到较高的准确度.
A Prediction Method for Photovoltaic Power Output based on X12 Seasonal Adjustment and Neural Network
Accurate prediction of the output is the foundation for the grid connection planning of photovoltaic projects,which has a significant impact on the photovoltaic power consumption and the safe and economic operation of the power grids.A photovoltaic power output prediction method is proposed based on X12 seasonal adjustment and neural network.Firstly,the X12 seasonal adjustment method is adopted to decompose the photovoltaic output sequence into trend,sea-sonal periodic and random components.Then,each component is predicted with BP neural network and the final result is obtained with the component combination.At last,the actual output sequence of the photovoltaic project in Huichang County,Jiangxi Province is studied.Prediction results show that the proposed method is of high prediction accuracy.

X12 seasonal adjustment methodoutput predictionneural networkcomponent decomposition

廖雪松、杜彬、陈林清、刘炎煌、文圆鑫、邹广华、何宏聪、杨金凯

展开 >

国网赣州市会昌县供电公司,江西 赣州 342600

X12季节调整法 出力预测 神经网络 分量分解

国网江西省电力有限公司2023年科技项目

5218G0230008

2024

水电与新能源
湖北省水力发电工程学会 湖北能源集团股份有限公司

水电与新能源

影响因子:0.301
ISSN:1671-3354
年,卷(期):2024.38(6)