首页|基于决策树算法的测绘遥感图像信息分类方法研究

基于决策树算法的测绘遥感图像信息分类方法研究

扫码查看
当前的测绘遥感图像信息分类节点的布设形式一般为独立的,分类识别范围较小,导致遥感图像信息漏分误差增加,为此提出了一种基于决策树算法的测绘遥感图像信息分类方法.根据当前的信息分类需求及标准,进行遥感图像信息预处理,采用多 目标的形式,以此来扩大分类识别范围,部署多 目标分类识别的节点,建立测绘遥感图像信息分类矩阵,以此为基础,构建决策树测算遥感图像信息分类模型,采用多元修正处理实现信息分类.测试结果表明:对比于测试组,该文方法的遥感图像信息漏分误差比被较好地控制在2.5以下,说明在决策树的辅助与支持下,当前对于遥感图形信息的分类效率更高,误差可控,将其应用到遥感图像自动分类中,具有很好的弹性和鲁棒性,且分类结构简单明了,达到了更好的分类效果,定义了一种特殊的数据结构,实现了该分类系统.实践表明,该系统具有很好的稳定性和交互性,实用性较强.
Research on classification method of surveying and mapping remote sens-ing image information based on decision tree algorithm
At present,the layout of classification nodes of surveying and mapping remote sensing image information is generally independent,and the classification and recognition range is small,which leads to the increase of missing error of remote sensing image information.Ac-cording to the current information classification requirements and standards,remote sensing im-age information is preprocessed in the form of multi-objective,so as to expand the classification and recognition range,deploy multi-objective classification and recognition nodes,establish the classification matrix of surveying and mapping remote sensing image in formation,and on this basis,construct a decision tree to calculate the classification model of remote sensing image in-formation,and adopt multiple correction processing to achieve information classification.The test results show that:Compared with the test group,the leakage error ratio of remote sensing image information of the proposed method is better controlled below 2.5,indicating that with the aid and support of decision trees,the current classification efficiency of remote sensing image information is higher and the error is controllable.When it is applied to automatic classification of remote sensing images,it has good elasticity and robustness,and the classification structure is simple and clear,and better classification effect is achieved.A special data structure is defined and the classification system is realized.The practice shows that the system has good stability and interactivity,and has strong practicability.

Decision tree algorithmSurveying and mapping remote sensingRemote sensing imageInformation classification methodRemote sensing recognition

田昕

展开 >

中晋环境科技有限公司,山西 太原 030000

决策树算法 测绘遥感 遥感图像 信息分类方法 遥感识别

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(1)
  • 12