首页|基于知识图谱和深度学习的学术论文推荐算法研究

基于知识图谱和深度学习的学术论文推荐算法研究

扫码查看
目的:文章针对当前学术论文推荐中存在的不足,提出将知识图谱与深度学习相结合的研究思路,研究一种学术论文推荐算法.方法:搜集文献资料,建立相关知识图谱.对用户的行为喜好及检索要求进行了分析.方法:通过构造查询矢量,度量相似度,生成资源推荐表,完成学术论文推荐.结论:通过与传统算法的比较,本文提出的算法可以使用户的搜索准确率提高4.53%,并且能够显著地提高用户的搜索准确率.
Research on academic paper recommendation algorithm based on knowledge mapping and deep learning
Purpose:This article aims at the shortcomings in current academic paper recommenda-tion,proposes a research idea that combines knowledge graphs with deep learning,and studies an academic paper recommendation algorithm.Methods:Collect literature and establish relevant knowledge graph.The user's behavioral preferences and retrieval requirements were analyzed.Method:Complete the recommendation of academic papers by constructing query vectors,meas-uring similarity,and generating resource recommendation tables.Conclusion:By comparing with the traditional algorithm,the algorithm proposed in this article can increase the user's search accuracy by 4.53%,and can significantly improve the user's search accuracy.

knowledge graphdeep learningacademic paper

杨宇亮、石嘉豪、陶秀杰、林杰

展开 >

南方电网科学研究院有限责任公司,广东广州 510000

知识图谱 深度学习 学术论文

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(1)
  • 4