首页|基于深度学习的中文实体关系抽取研究

基于深度学习的中文实体关系抽取研究

扫码查看
实体关系抽取能够从文本中提取事实三元组信息,这对于构建大规模的知识图谱是十分重要的.在现有的研究中,通常以先进行实体识别,而后进行关系分类或者进行统一标注的方式来完成这一任务,虽然这些方法能够使关系抽取任务变得更易实现,并且模型的网络框架灵活性更高,但是也存在误差积累和暴露误差等问题,且对于关系抽取中的关系重叠和实体嵌套等重难点问题不能够很好的处理.为了解决上述存在的问题,文章构建一种基于深度学习的中文实体关系联合抽取模型.该模型由基于评分的分类器和特定关系的角标记策略以及分区过滤网络构成,首先通过分区过滤网络,将输入的文本划分成三个分区,实体分区和关系分区以及共享分区,能够确保实体识别任务和关系抽取任务进行更好的双向交互;接着应用特定关系的角标记策略来解码实体信息,最后通过一个基于评分的分类器来输出事实关系三元组.实验表明,提出的方法能够改善传统方法带来的误差积累和交互缺失以及实体冗余等问题,提高了三元组抽取的准确率.
Deep Learning Based Chinese Entity Relaton Extraction Research
Entity relation extraction is important for building large-scale knowledge graphs,as it allows us to extract factual triplets from text.Existing research typically performs entity recog-nition first,followed by relation classification or unified annotation to complete this task.While these methods make relation extraction more achievable and flexible,they also suffer from error accumulation and error exposure.Additionally,they cannot handle difficult problems such as o-verlapping relations and nested entities.To address these issues,this paper proposes a deep learn-ing-based Chinese entity relation joint extraction model.he model consists of a score-based clas-sifier,a specific relation role labeling strategy,and a partition filter.Firstly,the partition filter divides the input text into three partitions:entity partition,relation partition,and shared parti-tion,which ensures better bidirectional interaction between entity recognition and relation ex-traction tasks.Then,the specific relation role labeling strategy is applied to decode the entity in-formation,and finally,a score-based classifier outputs factual relation triplets.Experiments show that the proposed method can improve the problems of error accumulation and interaction omission,as well as entity redundancy,which is commonly seen in traditional methods.The ac-curacy of triplet extraction is improved as a result.

Relation extractionKnowledge mapentity overlap

齐宁

展开 >

三峡大学计算机与信息学院,湖北宜昌 443000

关系抽取 知识图谱 实体嵌套

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(1)
  • 10