首页|一种基于图卷积网络的文本情感分类方法

一种基于图卷积网络的文本情感分类方法

扫码查看
为了更好地分析单词和长距离依赖的作用,解释相关的句法约束,本文提出了一种基于多头注意力机制和图卷积网络模型MHGCN,在句子的依存关系树上建立一个图卷积网络,以利用句法信息和单词依存关系.利用多头注意力机制学习多个表示子空间的相关信息,并使用图卷积网络获得句法信息和长距离依赖.实验表明,MHGCN模型能有效完成情感分类任务,可为人机交互、医疗保健和社交媒体舆情监测等提供参考依据.
A text sentiment classification method based on graph convolution network
In order to better analyze the role of words and long-distance dependencies,and explain relevant syntactic constraints,this paper proposes a graph convolutional network model MH-GCN based on multi head attention mechanism and graph convolutional network.A graph conv-olutional network is established on the dependency tree of a sentence to utilize syntactic infor-mation and single word dependencies.Utilize multi head attention mechanism to learn relevant information of multiple representation subspaces,and use graph convolutional networks to ob-tain syntactic information and long-distance dependencies.Experiments have shown that the MHGCN model can effectively complete sentiment classification tasks and provide reference ba-sis for human-computer interaction,healthcare,and social media public opinion monitoring.

natural language processingsentiment classificationgraph convolution networkmultiple attention mechanismbilstm

李波、许云峰

展开 >

河北科技大学信息科学与工程学院,河北石家庄 050018

自然语言处理 情感分类 图卷积网络 多头注意力机制 BiLSTM

河北省重点研发计划项目资助项目

21373802D

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(2)
  • 18