首页|基于改进RetinaNet模型的口罩规范佩戴检测方法

基于改进RetinaNet模型的口罩规范佩戴检测方法

扫码查看
新冠病毒在全球传播期间,规范佩戴口罩是最有效的防范方式.对公共场所中密集人群的口罩佩戴是否规范进行检测时,由于目标紧邻、遮挡以及含有大量的小目标,存在检测精度低、错检和漏检率高的问题.为了解决上述问题,文章提出一种基于改进RetinaNet模型的口罩规范佩戴检测方法.通过引入ECA-Net注意力模块,使得对口罩目标特征给予更多的关注,提高检测精度;其次,在特征金字塔FPN后引入自适应空间特征融合模块ASFF,来充分利用多尺度特征,进行更加充分的融合.使用该文所提出的方法在自制的口罩规范佩戴数据集进行实验,结果表明该文方法的整体性能优于其他的检测算法.
Improved Retina Net-based detection of mask specification wear
During the global spread of COVID-19,regulating the wearing of masks is the most effective form of prevention.When detecting whether masks are worn properly by dense groups of people in public places,there are problems of low detection accuracy and high rates of misde-tection and omission due to the close proximity of targets,occlusion and the presence of a large number of small targets.In order to solve the above problems,this paper proposes a mask speci-fication wearing detection method based on improved RetinaNet model.The introduction of the ECA-Net Attention Module makes it possible to give more attention to the mask target features and improve the detection accuracy;Secondly,the adaptive spatial feature fusion module ASFF is introduced after the feature pyramid FPN to make full use of the multi-scale features so that they can be more fully fused.Experiments using the method proposed in this paper on a home-made mask specification wearing dataset show that the overall performance of the method in this paper outperforms other detection algorithms.

Mask specification wear detectionRetinaNetAttentional MechanismAdaptive fea-ture fusion

张思甜、刘军清、康维

展开 >

三峡大学计算机与信息学院,湖北宜昌 443002

口罩规范佩戴检测 RetinaNet 注意力机制 自适应特征融合

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(2)
  • 16