首页|基于多特征核的高光谱遥感影像分类方法

基于多特征核的高光谱遥感影像分类方法

扫码查看
支持向量机(SVM)的核函数选取是制约其分类性能的重要因素,而当前的核函数大多以光谱距离作为构核元素,而忽略了光谱角度这一光谱特征.文章提出一种均衡化光谱距离与光谱角多特征组合核(ESAD)的SVM分类器,对2003年意大利帕维亚大学的ROSIS高光谱数据作分类处理,并对影像的分类精度作评价分析.实验结果表明:ES-AD核SVM整体分类精度相较于光谱距离核SVM和光谱角核SVM分别提升8.88%和11.03%,分类精度理想,一定程度上抑制了"同谱异物"现象.
Multi-Feature Kernel Based Classification for Hyperspectral Remote Sens-ing Image
Kernel function is an important clement which can absolutely affect the ability of Support Vector Machine(SVM),most of kernel functions are made of spectral distance only today,and they of-ten ignore the spectral angle which is an important feature of an image.This paper proposes a SVM classifier who's kernel is made of multi-feature Equalized Spectral Angle and Distance(ESAD),and classes Pavia University,Italy with ROSIS hyperspectral data which was gotten in 2003 with that.It al-so evaluates the accuracy of the classified image.It turns that the ESAD kernel SVM gets the overall accuracy increased by 8.88%and 11.03%comparing with spectral angle kernel SVM and spectral distance kernel SVM,the accuracy is optimistic and the method can solve the problem of"different ob-jects with same spectral curve"during image classifying.

Hyperspectral Remote SensingSupport Vector Machinespectral angleclassifica-tionkernel function

张鹏、解雷芳、郭博雷、张健秀、王勇

展开 >

中国电子科技集团公司第二十七研究所,河南 郑州 450047

高光谱遥感 支持向量机 光谱角 分类 核函数

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(2)
  • 3