首页|基于改进U-Net的超声前列腺分割算法研究

基于改进U-Net的超声前列腺分割算法研究

扫码查看
前列腺超声图像分割在临床诊疗和病理学研究中具有重要影响,而发现有些影像边缘出现凸起及不规则等复杂情形,这导致无法明确定位边缘位置,进而无法分割出前列腺.为解决上述问题,文章基于U-Net网络模型,设计出了一种改进的网络模型,通过添加高效层聚合网 络(Efficient Layer Aggregation Network,ELAN)模块,使编码获取更丰富的特征信息,有助于提高模型的感知能力和区分能力.实验表明该算法的MPA、MIoU、Dice值比基础模型算法分别提高 3.28%、2.97%、3.04%.
Research on Improved U-Net-based Ultrasound Prostate Segmentation Algo-rithm
Prostate ultrasound image segmentation plays a crucial role in clinical diagnosis and pathological research.However,it is often challenging to accurately locate the prostate due to complex scenarios such as protrusions and irregularities in the image edges.To address this issue,this paper proposes an improved network model based on the U-Net architecture.By incorpora-ting the Efficient Layer Aggregation Network(ELAN)module,the encoder is able to capture richer feature information,thus enhancing the model's perception and discrimination abilities.Experimental results demonstrate that the proposed algorithm achieves significant improvements in terms of mean absolute error(MPA),mean intersection over union(MIoU),and Dice coeffi-cient compared to the baseline model,with increases of 3.28%,2.97%,and 3.04%respectively.

U-Netprostate ultrasound imageEfficient Layer Aggregation Networkdeep learning

仰帅

展开 >

三峡大学,湖北 宜昌 443002

U-Net 前列腺超声图 高效层聚合网络 深度学习

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(2)
  • 12