首页|跨领域推荐方法研究综述

跨领域推荐方法研究综述

扫码查看
近年来,随着信息技术的迅速发展的爆发性增长,这一爆发式增长推动了跨领域推荐系统的出现和发展.跨领域推荐系统的设计和实现面临着诸多挑战,包括数据异构性、领域知识融合等问题.因此,书写跨领域推荐方法的研究变得尤为重要.这些方法旨在有效地整合来自不同领域的数据和信息,同时保持推荐系统的高效性和准确性.为实现这一目标,研究者们提出了各种跨领域推荐方法,包括基于迁移学习方法、基于多任务学习的方法等跨领域推荐方法,文章将从处理步骤及优缺点梳理各跨领域推荐系统方法.
A review of cross-domain recommendation methods
In recent years,with the explosive growth of the rapid development of information technology,this explosive growth has promoted the emergence and development of cross-field recommendation systems.The design and implementation of cross-domain recommendation sys-tems face many challenges,including data heterogeneity and domain knowledge fusion.There-fore,the study of writing cross-field recommendation methods has become particularly impor-tant.These methods are designed to effectively integrate data and information from different domains while maintaining the efficiency and accuracy of recommender systems.In order to a-chieve this goal,researchers propose a variety of cross-domain recommendation methods,inclu-ding transfer-based learning methods,multi-task learning-based methods and other cross-domain recommendation methods.

transfer learningmulti-task learningshared representationmigration strategyme-ta-learningHybrid approachSubject-based model and knowledge-based image learning

王婷、张悦

展开 >

桂林理工大学商学院,广西桂林 541004

迁移学习 多任务学习 共享表示学习 迁移策略学习 元学习 混合方法学习 基于主题模型和知识图像学习

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(2)
  • 10