首页|基于改进GhostNet的作物害虫识别网络

基于改进GhostNet的作物害虫识别网络

扫码查看
虫害是影响农作物产量的重要因素之一,及时准确地识别害虫是有效防治的重要前提,对提高作物产量具有重大意义,针对准确度不高、模型较复杂、识别效益低下问题.文章提出一种改进GhostNet的作物害虫识别模型,将胶囊网络模型替换GhostNet平均池化层,保留模型更多空间信息特征提取;在GhostNet的Ghost瓶颈结构中,将ReLU激活函数替代为Hardswish激活函数,提高模型的泛化能力,减少了网络模型参数量.实验结果表明:在对14类作物下的害虫进行识别时,改进GhostNet模型最高准确率达到97.60%,优于ResNet等经典卷积神经网络模型,为实际作物害虫识别的应用场景下提供了一定的保障.
Crop Pest Identification Network Based on ImprovedGhostNet
Insect infestation is one of the important factors affecting crop yield.Timely and accu-rate identification of pests is an important prerequisite for effective prevention and control,and is of great significance for improving crop yield.It addresses issues such as low accuracy,com-plex models,and low recognition efficiency.This article proposes an improved crop pest identi-fication model based on GhostNet,replacing the capsule network model with the GhostNet av-erage pooling layer to retain more spatial information and feature extraction from the model;In the Ghost bottleneck structure of GhostNet,the RcLU activation function is replaced by the Hardswish activation function to improve the model's generalization ability and reduce the number of network model parameters.The experimental results show that when identifying pests under 14 types of crops,the improved GhostNet model has the highest accuracy of 97.60%,which is superior to classic convolutional neural network models such as ResNet,provi-ding a certain guarantee for the application scenarios of actual crop pest identification.

Pest identificationGhostNetCapsule networkConvolutional neural network

彭鑫

展开 >

吉林化工学院信息与控制工程学院,吉林 132000

害虫识别 GhostNet 胶囊网络 卷积神经网络

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 16