首页|基于深度学习的色素性皮肤病识别研究

基于深度学习的色素性皮肤病识别研究

扫码查看
由于皮肤镜图片存在着毛发、纹理等方面的干扰,常导致色素性皮肤病识别的误判.为了提高对色素性皮肤病的识别准确率、减少模型的参数量、降低计算量,提出了一种基于MobileViT的色素性皮肤病识别方法.把MobileViT模型作为基础,使用迁移学习训练,并对MobileViT模型作出改进,将MobileViT block的输出融合CBMA注意力机制,对输出使用EfficientNetv2-xl进行知识蒸馏.研究结果表明改进后的算法识别准确率相比原模型提高了 7.28%,计算量与参数量也有所降低.并实现了 9种色素性皮肤病分类识别界面,为色素性皮肤病在医学辅助诊断方面的研究提供了实验基础.
Research on Pigmented Skin Disease Recognition based on Deep Learning
Due to the interference of factors such as hair and texture in dermoscopy images,the i-dentification of pigmented skin diseases often leads to misclassification.To enhance the accuracy of pigmented skin disease recognition,reduce model parameters,and decrease computational complexity,a novel approach based on MobileViT is proposed.The MobileViT model is utilized as the foundation for training,leveraging transfer learning techniques.Further improvements are made by fusing the output of the MobileViT block with the CBMA attention mechanism and applying knowledge distillation using EfficicntNctv2-xl.Experimental results demonstrate that the en-hanced algorithm achieves a 7.28%increase in recognition accuracy compared to the original model,a-long with reduced computational complexity and parameter volume.Moreover,an interface for classif-ying and identifying nine types of pigmented skin diseases has been developed,providing an experi-mental basis for research on the medical-assisted diagnosis of pigmented skin diseases.

pigmented skin diseasesMobileViTCBMA

陈澳

展开 >

三峡大学水电工程智能视觉监测湖北省重点实验室,湖北宜昌 443002

三峡大学计算机与信息学院,湖北宜昌 443002

色素性皮肤病 MobileViT CB-MA

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 16