首页|一种基于深度学习的水声信道估计方法

一种基于深度学习的水声信道估计方法

扫码查看
在水下通信领域中,电磁波的传播会受到很大的限制,所以水声通信成为了通信的主要手段.利用正交频分复用(OFDM)调制技术的优势,在复杂且多变的水声信道中进行通信是目前常用的方法之一.为了应对水声信道的不利条件,需要使用信道估计来获取信道的状态信息来进行信道均衡以获得更好的通信效果.文章提出了一种基于深度学习的水声信道估计方法.设计了改进型多层感知机模型进行水声信道估计.与传统方法相比,文章提出的方法在估计性能与鲁棒性方面均获得了提升,同时也证明了残差对于基于深度学习的信道估计性能的提升有所帮助.
A Deep Learning-Based Method for Underwater Acoustic Channel Estimation
In the field of underwater communications,the propagation of electromagnetic waves is greatly restricted,making underwater acoustic communication the primary means of commu-nication.Utilizing the advantages of Orthogonal Frequency Division Multiplexing(OFDM)modulation technique,communication in complex and variable underwater acoustic channels has become one of the commonly used methods.To overcome the adverse conditions of underwater acoustic channels,channel estimation is required to obtain the channel state information for channel equalization and improved communication performance.The paper proposes a deep learning-based method for underwater acoustic channel estimation.An improved multi-layer perceptron model is designed for underwater channel estimation.Compared to traditional meth-ods,the proposed method achieves improvements in estimation performance and robustness,while also demonstrating the beneficial role of residual learning for enhancing the performance of deep learning-based channel estimation.

underwater acoustic communicationOFDMDeep learningChannel estimation

王晗、吴钊和、戴依霖、许一虎

展开 >

延边大学,吉林延吉 133002

水声通信 OFDM 深度学习 信道估计

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 10