首页|基于超像素分割的车辆检测算法

基于超像素分割的车辆检测算法

扫码查看
随着我国落地机动车数量增加,路面交通压力也逐步增加,采用人工智能方法对车辆进行快速识别,从而获得车辆和路况等信息具有重要意义.针对SLIC算法在目标与环境颜色或亮度极度相似时效果不佳的问题,文章考虑车辆具有对称性和轮廓等特征,提出一种基于自适应的超像素分割车辆检测算法.在原有算法引入变量λ,用于衡量亮度与颜色之间的重要性,改善SLIC模型.论文选定了 BIT-vehicle数据集在YOLOv5模型进行实验.此算法能有效提高YOLOv5模型在车辆识别的性能,实验结果表明对比未处理的模型精度提高1%,全类平均精度提高1.3%.
A Vehicle Detection Algorithm based on Superpixels Segementation
With the increasing number of landing motor vehicles in China,the road traffic pres-sure has gradually increased.Therefore,it is of great significance to apply artificial intelligence method to quickly identify vehicles and obtain information such as vehicle and road conditions.SLIC uses a small number of superpixels to replace a large number of pixels,expressing image feature,capturing local image similarities,and highlighting the boundaries of each content in the image,thus reducing the complexity of image post-processing to a certain extent.However,the SLIC has a poor effect when the target is extremely similar to the ambient color or bright-ness.In this paper,considering the symmetry and contour characteristics of vehicles,a vehicle detection algorithm based on adaptive superpixels segmentation is proposed to improve the SLIC by introducing variables to measure the importance between brightness and color.This article se-lected BIT-vehicle data set for experiments in YOLOv5.The algorithm can effectively improve the performance of YOLOv5 in vehicle recognition,and the experimental results show that compared with the unprocessed model,the accuracy is improved by 1%,and the mAP is im-porved by 1.3%.

Vehicle detectionSuperpixels segmentationAdaptive SLIC algorithmYOLOv5

刘志鸿、魏福义、唐蒨瑶、郭盈、李栋鑫、SU Peiwei

展开 >

华南农业大学,广东广州 510642

South China Agricultural University,Guangzhou 510642,China

车辆检测 超像素分割 自适应的SLIC算法 YOLOv5模型

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 9