首页|基于改进U-Net的遥感影像道路提取算法

基于改进U-Net的遥感影像道路提取算法

扫码查看
针对在不同地物背景下遥感影像道路提取中仍存在大量漏提、误提、提取精度不够高等问题,文章基于U-Net模型构建了 Res50CBAM-Net模型.首先,该模型将原始U-Net模型的特征提取网络替换为ResNet50,加深了特征提取网络深度,提高了网络特征提取能力;其次,在U-Net跳跃连接层加入卷积块注意力机制,增强了模型对道路目标的识别能力.结果表明,文章构建的模型在不同场景下提取效果更好,交并比、F1-score 较原始模型分别提升了2.72%、2.26%.
Road extraction algorithm for remote sensing images based on improved U-Net
In response to the problems of significant omissions,errors,and low extraction accu-racy in road extraction from remote sensing images under different land cover backgrounds,this paper constructs a Res50CBAM Net model based on the U-Net model.Firstly,the model re-places the feature extraction network of the original U-Net model with ResNet50,deepening the depth of the feature extraction network and improving its feature extraction capability;Sec-ondly,the addition of convolutional block attention mechanism in the U-Net skip connection layer enhances the model's ability to recognize road targets.The results show that the model constructed in this article has better extraction performance in different scenarios,with an inter-section to union ratio and F1 score improvement of 2.72%and 2.26%,respectively,compared to the original model.

Road extractionAttention mechanismSemantic segmentationU-Net

苏雷、屈炳剑

展开 >

湄潭县国土空间规划生态修复工程技术中心,贵州遵义 563000

湄潭县自然资源调查与国土空间规划中心,贵州遵义 563000

道路提取 注意力机制 语义分割 U-Net

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 10