首页|基于自注意力的卷积神经网络结构损伤识别

基于自注意力的卷积神经网络结构损伤识别

扫码查看
传统的损伤识别技术依赖于人工特征工程和机器学习技术.深度学习在现代结构损伤识别方面的应用,使得精度和效率取得了显著的提高.文章以现有的深度学习技术为基础,提出了一种基于注意力机制的卷积神经网络,在一座三跨连续桥上进行的实验验证表明,单点损伤识别的误差为2.4%,而多点损伤识别误差低于5%.因此,这种基于深度学习方法可以有效的解决结构损伤识别问题.
Structural Damage Identification of Convolutional Neural Networks Based on Self Attention
Traditional damage identification techniques rely on artificial feature engineering and machine learning techniques.The application of deep learning in modern structural damage i-dentification has significantly improved accuracy and efficiency.The article proposes a convolu-tional neural network based on attention mechanism,based on existing deep learning tech-niques.Experimental verification on a three span continuous bridge shows that the error of sin-gle point damage recognition is 2.4%,while the error of multi-point damage recognition is less than 5%.Therefore,this deep learning based method can effectively solve the problem of structural damage identification.

Deep learningBridge structureIdentification of damage severity

刘雄

展开 >

广州大学土木工程学院,广东广州5100006

深度学习 桥梁结构 损伤程度识别

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 12