首页|基于内容与知识理解多模态融合的高泛化性伪造信息检测

基于内容与知识理解多模态融合的高泛化性伪造信息检测

扫码查看
该研究旨在开发一种高泛化性伪造信息检测方法,该方法基于内容与知识理解多模态融合以及响应知识迁移.首先,通过跨模态融合实现内容不一致性表征,通过对视频和音频模态进行编码并融合,捕捉和表征不一致的内容特征,其次,为了提升模型在不同数据集上的泛化性能,该研究引入知识迁移技术,使用现有数据集训练教师模型,然后将教师模型的知识转移到学生模型上,使学生模型能够从更广泛的角度理解伪造信息,并在未见过的数据上展现出更好的泛化性能.
Highgeneralization forged information detection based on multimodal fu-sion of content and knowledge understanding
This study aims to develop a highlygeneralized method for detecting forged informa-tion,which is based on multimodal fusion of content and knowledge understanding,as well as responsive knowledge transfer.Firstly,content inconsistency representation is achieved through cross modal fusion.By encoding and fusing video and audio modalities,inconsistent content fea-tures are captured and represented.Secondly,in order to improve the generalization performance of the model on different datasets,the study introduces knowledge transfer technology,trains the teacher model using existing datasets,and then transfers the knowledge of the teacher model to the student model,enabling the student model to understand forged information from a broa-der perspective and demonstrate better generalization performance on unseen data.

detection of forged informationHigh generalizationContent understandingKnowledge transferMultimodal fusion

郑威、凌霞

展开 >

中国信息通信研究院,北京 100083

伪造信息检测 高泛化性 内容理解 知识迁移 多模态融合

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(3)
  • 6