首页|基于特征融合和注意力机制的人脸表情识别

基于特征融合和注意力机制的人脸表情识别

扫码查看
文章针对现有单通道卷积神经网络对表情特征聚焦不够、特征提取不充分而损失部分有效信息的问题,提出了一种多通道融合并行网络特征的人脸表情识别算法,融合局部细节特征和全局整体特征,同时使用双网络对不同通道特征进行提取,实现粗细粒度结合,增强模型对不同表情的识别能力.该算法采用双特征提取通道,使用并行的两个网络对面部特征进行提取.其中分为使用结合注意力机制的残差网络提取全局特征的M-CNN通道和使用多尺度特征提取网络提取眼部和嘴部特征的P-CNN通道.随后将三个通道提取的特征进行融合,再经通道注意力模块划分重要性后降维,最后送入联合损失函数层分类.该模型已经在CK+数据集和FER2013数据集上进行了大量实验,结果表明,该模型的识别精度相比其他先进方法有所提升,证明了所提模型的先进性和有效性.
Face expression recognition based on feature fusion and attention mecha-nism
This paper addresses the issue of insufficient focus on facial expression features and in-adequate feature extraction leading to the loss of valuable information in existing single-channel convolutional neural networks for facial expression recognition.A facial expression recognition algorithm is proposed,which integrates features from multiple channels through parallel net-works.The algorithm combines local detailed features with global holistic features and employs dual networks to extract features from different channels,achieving a combination of coarse and fine granularity to enhance the model's recognition capability for various expressions.The algo-rithm utilizes dual feature extraction channels,including the M-CNN channel,which uses a re-sidual network with attention mechanisms to extract global features,and the P-CNN channel,which employs a multi-scale feature extraction network to extract eye and mouth features.Sub-sequently,the features extracted from the three channels are fused,dimensionality is reduced af-ter channel importance is determined through a channel attention module,and the fused features are finally fed into a joint loss function layer for classification.The model has undergone exten-sive experiments on the CK+dataset and FER2013 dataset.The results demonstrate an improve-ment in recognition accuracy compared to other state-of-the-art methods,validating the advance-ment and effectiveness of the proposed algorithm.

Deep learningFacial expression recognitionFeature fusionAttention mechanism

张博程、李威

展开 >

沈阳工业大学信息与工程学院,辽宁沈阳 110020

深度学习 人脸表情识别 特征融合 注意力机制

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 13