首页|基于改进DeepLabV3+模型的建筑物提取

基于改进DeepLabV3+模型的建筑物提取

扫码查看
针对遥感影像建筑物提取仍然存在提取精度较低的问题,文章基于Deep-LabV3+模型构建了 M2-CA-DeepLabV3+模型,该模型首先使用MobileNetV2作为特征提取网络,在很大程度上减少了模型的参数量,提升了模型的特征提取能力;其次通过坐标注意力机制加强网络模型对建筑特征的学习和特征提取能力.结果表明:该文构建模型表现在不同区域背景下优于原始DeepLabV3+模型交并比、F1分数分别高于原始模型4.14%、3.52%.
Building extraction based on improved DeepLabV3+model
In respo-nse to the problem of low extraction accuracy in building extraction from re-mote sensing images,this paper constructs an M2-CA-DccpLabV3+model based on the Decp-LabV3+model.The model first uses MobileNetV2 as a feature extraction network,which greatly reduces the number of parameters in the model and improves its feature extraction abili-ty;Secondly,the ability of the network model to learn and extract architectural features is en-hanced through the coordinate attention mechanism.The results show that the model constructed in this article performs better than the original DeepLabV3+model in different regional back-grounds,with an intersection ratio and F1 score of 4.14%and 3.52%higher than the original model,respectively.

building extractionCoordinate attention mechanismSemantic segmentationDeep-LabV3+MobileNetV2

陈兵

展开 >

贵州省煤田地质局地测大队,贵州 黔南 558000

建筑物提取 坐标注意力机制 语义分割 DeepLabV3+ MobileNetV2

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 12