首页|基于ResNet和Transformer的早期肺癌诊断算法

基于ResNet和Transformer的早期肺癌诊断算法

扫码查看
肺癌的早期诊断对于提高患者的存活率具有关键性作用.通过计算机辅助诊断系统进行肺部影像的分析,可以帮助医生及早发现病变.文章提出了一个结合ResNet和Transformer的深度学习框架,用于CT图像中的肺结节检测和分类,从而实现早期肺癌的 自动诊断.我们首先进行数据增强,然后利用Res-Net强大的特征提取能力来获取图像的深层特征,同时引入Transformer来捕获特征间的长范围依赖关系,增强模型对肺结节微小变化的识别能力.实验结果表明,该算法能有效提高早期肺癌检测的准确性和灵敏度.
Early lung cancer diagnosis algorithm based on ResNet and Transformer
Early diagnosis of lung cancer plays a key role in improving the survival rate of pa-tients.The analysis of lung images by computer aided diagnostic system can help doctors to de-tect lesions early.In this paper,a deep learning framework combining ResNet and Transformer is proposed for the detection and classification of lung nodules in CT images,so as to realize the automatic diagnosis of early lung cancer.Firstly,data enhancement is carried out,and then ResNet's powerful feature extraction capability is utilized to obtain the deep features of the im-age.Meanwhile,Transformer is introduced to capture the long-range dependence relationship between features and enhance the models recognition ability of small changes in lung nodules.Experimental results show that the algorithm can effectively improve the accuracy and sensitivi-ty of early lung cancer detection.

early diagnosis of lung cancerComputer aided diagnosisResNetTransformerDeep learning

郑经一

展开 >

三峡大学,湖北宜昌 443002

肺癌早期诊断 计算机辅助诊断 ResNet Transformer 深度学习

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 12