首页|基于Attention-CS-LSTM乙烯裂解炉管温度预测

基于Attention-CS-LSTM乙烯裂解炉管温度预测

扫码查看
在乙烯生产过程中,针对乙烯裂解炉管温度难监测的情况,需要对传统的温度测量方法进行改进,通过数据模型下的优化操作可以有效预测乙烯裂解炉出口温度,当出现温度波动时进行干预,提高产品效率和生产安全.文章将改进的布谷鸟算法优化LSTM(CS-LSTM)应用于真实工业数据,并与四种模型进行比较.仿真结果表明,采用Attention-CS-LSTM 预测准确率明显提高,且具有良好的稳态准确度,该方法的温度预测准确率为95%.
Prediction of Temperature Field in an Improved CS-LSTM Ethylene Cracking Furnace
In the process of ethylene production,it is necessary to improve the traditional temper-ature measurement method in response to the difficulty of monitoring the temperature of the ethylene cracking furnace tube.By optimizing the operation under the data model,the outlet temperature of the ethylene cracking furnace can be effectively predicted.When temperature fluctuations occur,intervention can be taken to improve product efficiency and production safe-ty.This article applies the improved cuckoo bird algorithm optimized LSTM(CS-LSTM)to real industrial data and compares it with four models.The simulation results show that using Atten-tion CS LSTM significantly improves the prediction accuracy and has good steady-state accura-cy,with a temperature prediction accuracy of 95%.

Cuckoo bird searchAttention mechanismAlgorithm optimization

张子默、崔得龙

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132022

广东石油化工学院计算机与电子信息学院,广东茂名 525000

布谷鸟算法 LSTM 注意力机制

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 20