首页|基于结构及语义信息的知识图谱补全算法

基于结构及语义信息的知识图谱补全算法

扫码查看
知识图谱作为一种强大的知识表示工具,已经成为信息检索领域的关键技术之一.传统的知识图谱补全算法主要依赖图结构信息,而忽略了实体和关系的语义信息.为弥补这一不足,文章提出了一种基于结构及语义信息的知识图谱补全算法,通过预训练语言模型前向传递生成来捕获三元组中的语义信息,依靠反向传播优化结构化损失来重建语义嵌入中的知识图谱结构,并结合对比学习来训练模型从而提高模型性能.文章提出的算法与传统的基于结构的算法TransE比较,在Hits@10指标上提升7.0%.
Knowledge graph completion algorithm based on structure and semantic in-formation fusion
As a powerful knowledge representation tool,knowledge graph has become one of the key technologies in the field of artificial intelligence and information retrieval.Traditional knowledge graph completion algorithms rely mainly on graph structure information,but neglect the semantic information of entities and relations,which leads to inadequate understanding of complex semantic associations.In order to address this issue,this paper proposes an innovative knowledge graph completion algorithm based on the fusion of structure and semantic informa-tion,which captures the semantic information in triples by forward transfer generation of pre-trained language model.Reverse propagation is used to optimize the structure loss to reconstruct the knowledge graph structure in semantic embedding.The performance of the model is im-proved by combining the comparative learning models.Compared with the traditional text-based algorithm KG-Bert,the proposed algorithm improves hits@10 index by 7.8%.

structural informationsemantic informationcomparative learningknowledge graph complement

李思慧

展开 >

三峡大学,湖北宜昌 443002

结构信息 语义信息 对比学习 知识图谱补全

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 13