首页|基于多尺度学习、特征映射网络的图像超分辨率重建研究

基于多尺度学习、特征映射网络的图像超分辨率重建研究

扫码查看
图像超分辨率的重建技术,是针对传统卷积神经网络重建(SRCNI)方法,存在的像素特征利用率低、高频细节恢复能力弱等问题,提出利用多尺度卷积核、特征映射网络.进行多图像像素递归学习、特征映射的重建执行方法.通过搜集低分辨率(LR)图像数据集、图像像素特征,基于SR图像超分辨率重建技术,使用1×1、3×3等尺度的卷积核,作出图像像素数据的降维处理、浅层特征提取、特征映射、特征信息融合等操作,并结合递归学习后的局部残差、全局残差特征反馈结果,将多尺度的低分辨率(LR)像素特征,映射到高分辨率(HR)像素特征空间,可得到特征融合后的、重建的超分辨率图像.
Image super-resolution reconstruction based on multi-scale learning and feature mapping network
super-resolution image reconstruction technology is aimed at traditional convolutional neural network reconstruction(Srcni)methods,which have the problems of low utilization of pixel features and weak recovery ability of high-frequency details,in this paper,a new method of multi-pixel recursive learning and feature mapping based on multi-scale convolution kernel and feature mapping network is proposed.By collecting low-resolution(LR)image data sets and image pixel features,based on SR image super-resolution reconstruction technology,using 1X1,3×3 scale convolution cores,the operations of dimensionality reduction,shallow feature extrac-tion,feature mapping and feature information fusion of image pixel data are made,and the feed-back results of local and global residuals after recursive learning are combined,the multi-scale low-resolution(LR)pixel features are mapped into the high-resolution(HR)pixel feature space to obtain the reconstructed super-resolution image after feature fusion.

multi-scale learningfeature mapping networkimage super-resolutionreconstruc-tion

彭青梅

展开 >

闽南科技学院,福建泉州 362000

大数据与人工智能福建省高校重点实验室,福建泉州 362332

多尺度学习 特征映射网络 图像超分辨率 重建

大数据与人工智能福建省高等学校重点实验室项目校级课程思政示范课程项目

GXKYSY201901MKKCSZ-2023-03

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 7