首页|基于数据挖掘的电力通信网络安全态势识别方法

基于数据挖掘的电力通信网络安全态势识别方法

扫码查看
为了解决现有电力通信网络安全态势识别方法识别时间长、效率低的问题,提出基于数据挖掘的电力通信网络安全态势识别方法.首先,利用SVM算法采集电力通信网络安全随机样本数据,并对数据分类.其次,利用数据挖掘技术,对多步攻击序列挖掘,并实现对异常数据的聚类.最后,将安全态势分为安全、一般危险和危险三个等级,结合危险值计算结果对电力通信网络安全态势识别.分析实验结果可知:新的识别方法在应用中识别时间更短,具备更高的识别效率,值得广泛应用和推广.
Situation identification method of power communication network security based on data mining
In order to solve the problems of long identification time and low efficiency of the ex-isting power communication network security situation identification method,the power com-munication network security situation identification method based on data mining is proposed.First,the SVM algorithm is used to collect the random sample data of power communication network security and classify the data.Secondly,the data mining technology is used to mine the multi-step attack sequence and realize the clustering of anomalous data.Finally,the security situ-ation is divided into three levels:safety,general danger and danger,and the security situation of the power communication network is identified by combining with the danger value calculation results.According to the experimental results,the new identification method has shorter identi-fication time and higher identification efficiency in the application,which is worthy of wide ap-plication and promotion.

data miningcommunication networksecurity situationabnormal data

万江红

展开 >

国网湖北省电力有限公司宜昌供电公司,湖北宜昌 443000

数据挖掘 通信网络 安全态势 异常数据

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 12