首页|一种基于RepVGG的图像分类方法

一种基于RepVGG的图像分类方法

扫码查看
针对传统基于深度学习的图像分类模型,所存在模型训练过程中由于网络层增加所导致过拟合的问题,提出了一种基于RepVGG的图像分类方法.文章基于RepVGG模型进行优化,在优化的模型中引用残差注意力机制增强网络对图像特征的提取,并且采用全卷积层替代全连接以提高模型对图像特征信息的处理能力.实验结果表明,本文所提出的方法具有较高的精确度,其最高准确率为96.3%,证明了本优化算法的有效性.
An image classification method based onRepVGG
Aiming at the traditional image classification model based on deep learning,an image classification method based on RepVGG is proposed due to the over fitting problem caused by the increase of network layer during the training process.This paper is optimized based on the RepVGG model,and the residual attention mechanism is used in the optimized model to enhance the extraction of image features by the network,and the full convolutional layer is used instead of the full connection to improve the processing ability of the model on image feature informa-tion.Experimental results show that the proposed method has high accuracy,and its highest ac-curacy is 96.3%,which proves the effectiveness of the optimization algorithm.

RepVGGimage classificationresidual attentionFully convolutional layers

胡益博、杨舒鹏、马思雨、朱梦兰、高仁仆、蒋明忠

展开 >

桂林理工大学信息科学与工程学院,广西 桂林 541004

RepVGG 图像分类 残差注意力 全卷积层

广西壮族自治大学生创新创业训练计划(2023)

202310596468

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 6