首页|基于联邦学习的医教协同数据安全模型研究

基于联邦学习的医教协同数据安全模型研究

扫码查看
文章针对医疗领域数据共享和隐私安全问题展开研究,提出了一种基于联邦学习的医教协同数据安全模型.首先介绍了医疗数据共享中存在的隐私泄露和安全风险,以及传统集中式数据训练方法的局限性.随后阐述了联邦学习的基本原理和优势,以及其在医教协同数据安全方面的潜在应用.在此基础上,提出了一种基于联邦学习的医教协同数据安全模型,该模型在保护数据隐私、实现分布式数据合作、提高数据安全性和数据多样性方面对深化医教协同有推广价值.
Research on Medical Education Collaborative Data Security Model Based on Federated Learning
This article conducts research on data sharing and privacy security issues in the medical field,and proposes a medical education collaborative data security model based on federated learning.Firstly,the privacy breaches and security risks in medical data sharing were introduced,as well as the limitations of traditional centralized data training methods.Subsequently,the basic principles and advantages of federated learning were elaborated,as well as its potential applica-tions in medical education collaborative data security.On this basis,a medical education collabo-rative data security model based on federated learning is proposed,which has promotion value for deepening medical education collaboration in protecting data privacy,implementing distribu-ted data cooperation,improving data security and diversity.

Federated learningmedical education collaborationdata privacymodel aggregation

王以伍、冯军

展开 >

成都医学院现代教育技术中心,四川成都 610051

联邦学习 医教协同 数据隐私 模型聚合

教育部科技发展中心项目四川省教育信息化与大数据中心项目四川省科技厅重点研发项目成都医学院教学改革重点研究项目

2020ITA02047川教馆[2021]2302022YFG0187JG2022081

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 8