首页|基于GWO与PSO融合优化算法的雾计算资源分配研究

基于GWO与PSO融合优化算法的雾计算资源分配研究

扫码查看
针对雾计算资源分配问题,文章通过结合灰狼优化算法(GWO)较好的全局搜索能力以及粒子群优化算法(PSO)良好的算法收敛能力而提出了一种新的资源分配思路.此外优化算法权重取值对算法性能的影响较大,文章引入一种自适应权重策略来调节算法的权重,以优化算法对于节点资源分配准确度和效率.实验结果表明,该文提出的算法在雾计算资源分配问题上具有更好的性能,为任务提供更为高效、快速的资源调度策略.
Research on Fog Computing Resource Allocation Based on Fusion Optimi-zation Algorithm of GWO and PSO
In response to the resource allocation problem in fog computing,the paper proposes a new resource allocation approach by combining the excellent global search capability of Grey Wolf Optimization(GWO)algorithm with the good algorithm convergence capability of Parti-cle Swarm Optimization(PSO)algorithm.In addition,the weight values of the optimization al-gorithm have a significant impact on the algorithm performance.The paper introduces an adap-tive weight strategy to adjust the algorithm weights,optimizing the accuracy and efficiency of the algorithm for node resource allocation.Experimental results show that the proposed algo-rithm has better performance in fog computing resource allocation problems,providing a more efficient and rapid resource scheduling strategy for tasks.

Fog computingResource allocationGWOPSOAdaptive weight strategy

贺涛

展开 >

中通服咨询设计研究院有限公司,江苏 南京 210019

雾计算 资源分配 灰狼优化算法 粒子群优化算法 自适应权重策略

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(4)
  • 6