首页|基于卷积神经网络的输电现场作业风险告警方法

基于卷积神经网络的输电现场作业风险告警方法

扫码查看
由于传统的告警方法只能提取有限的特征,导致检测输电现场作业异常时精准度低.针对上述问题,提出基于卷积神经网络的输电现场作业风险告警方法.通过对输电现场作业故障时间分布特征的分析,了解故障发生的情况.其次,通过获取输电现场作业异常距离,提取输电现场作业的异常情况.利用提取出来的异常特征,建立一个基于卷积神经网络的输电现场作业异常检测模型,检测输电现场作业异常情况.最后,通过输电现场作业风险告警及时提醒相关人员采取应对措施.实验证明该方法能精准检测输电现场作业异常情况,及时发现风险,提高输电线路作业风险告警精度.
Risk Warning Method for Transmission Site Operations Based on Convolu-tional Neural Networks
Due to the limited features that traditional alarm methods can only extract,the accura-cy of detecting anomalies in power transmission site operations is low.To address the above is-sues,a risk warning method for on-site transmission operations based on convolutional neural networks is proposed.By analyzing the distribution characteristics of fault time in on-site trans-mission operations,we can understand the occurrence of faults.Secondly,by obtaining the ab-normal distance of the transmission site operation,the abnormal situation of the transmission site operation is extracted.Using the extracted abnormal features,establish a convolutional neural network-based anomaly detection model for power transmission on-site operations to detect ab-normal situations in power transmission on-site operations.Finally,timely remind relevant per-sonnel to take corresponding measures through risk warnings for on-site transmission opera-tions.The experiment proves that this method can accurately detect abnormal situations in pow-er transmission site operations,timely detect risks,and improve the accuracy of risk warning for power transmission line operations.

Convolutional neural networkTransmission site operationsTransmission linesRisk warning

肖潇、牛晓雷、贤柱英、郭壮军、韦海

展开 >

中国南方电网超高压输电公司梧州局,广西梧州 543002

卷积神经网络 输电现场作业 输电线路 风险告警

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 10