首页|多种无人机的卷积网络识别方法

多种无人机的卷积网络识别方法

扫码查看
传统的无人机信号识别方法存在着识别精度不高、对复杂环境下信号的适应性差、速度慢等问题,采用基于卷积神经网络(CNN)的无人机信号自动识别方法对无人机采集信号的真实数据进行预处理,进而建立了卷积神经网络的多层模型.通过实验结果表明,在7dB时除了御2以外,所有信号的准确率都在90%以上,在10dB时,御2识别率也到达了 90%.因此,使用CNN在识别6种无人机信号方面表现出了较高的准确性和鲁棒性.相比之前的识别方法,这种方法提高了识别精度、适应复杂环境下信号的能力,并加快了识别速度.
Convolutional network recognition methods for multiple UAVs
Traditional UAV signal recognition methods have some problems,such as low recogni-tion accuracy,poor adaptability to signals in complex environments,and slow speed.The auto-matic recognition method of UAV signal based on convolutional neural network(CNN)is a-dopted to pre-process the real data of UAV signal acquisition,and then a multi-layer model of convolutional neural network is established.The experimental results show that the accuracy rate of all signals is above 90%at 7dB except for royal 2,and the recognition rate of royal 2 reaches 90%at 10dB.Therefore,the use of CNN showed high accuracy and robustness in identifying six types of drone signals.Compared with the previous recognition methods,this method im-proves the recognition accuracy,ADAPTS the signal to the complex environment,and speeds up the recognition speed.

Convolutional neural networkSignal processingModulation recognition

阮中波、廖小文

展开 >

成都信息工程大学电子工程学院,四川成都 610225

卷积神经网络 信号处理 调制识别

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 6