首页|基于弱监督的细胞核图像分割算法

基于弱监督的细胞核图像分割算法

扫码查看
细胞核分割在组织病理学图像分析中扮演着重要的角色.基于像素级别标注的细胞核图像分割算法已经取得了显著的效果,但由于细胞核数量众多且体积较小,标注工作量大,很难获取高质量数据集.因此,提出了一种基于弱监督的细胞核图像分割算法,仅对部分细胞核进行点标注就可以完成细胞核图像的分割任务.为了能够利用部分点进行分割,首先训练一个检测模型来获取所有细胞核的位置,然后基于检测结果生成两种伪标签用于细胞核分割.实验结果表明,与基于像素级别标注的细胞核图像分割算法相比,文章的方法在保证分割性能的同时大大降低了标签标注工作量.
Algorithm Based on Weak Supervision for Nucleus Image Segmentation
Nucleus segmentation plays a crucial role in the analysis of histopathological images.While pixel-level annotated algorithms for nucleus image segmentation have shown significant effectiveness,the large number and small size of cell nuclei make the annotation workload im-mense,making it difficult to obtain high-quality datasets.Therefore,this paper proposes a nucle-us image segmentation method based on weak supervision,where only a subset of cell nuclei is annotated with points to accomplish the segmentation task.To leverage partial points for seg-mentation,we first train a detection model to obtain the positions of all cell nuclei.Subsequent-ly,two pseudo-labels are generated based on the detection results for nucleus segmentation.Ex-perimental results indicate that,compared to pixel-level annotated algorithms for nucleus image segmentation,our method significantly reduces the labeling workload while maintaining seg-mentation performance.

nucleus segmentationweakly supervised learningpoint annotationpathological a-nalysis

阮启胜

展开 >

三峡大学计算机与信息学院,湖北宜昌 443002

细胞核分割 弱监督学习 点标注 病理学分析

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 10