首页|基于卷积神经网络的电阻抗成像图像重建

基于卷积神经网络的电阻抗成像图像重建

扫码查看
电阻抗成像图像重建是一个高度非线性和不适定性问题,为解决传统图像重建方法丢失信息、无法实现高精度和实时成像的问题,文章提出了 一种基于LeNet-5卷积神经网络结构的电阻抗图像重建方法.该方法利用MATLAB以及COMSOL联合仿真建立规则的圆形模型以及符合人体几何特异性的肺部模型,生成具有不同成像特征的样本,这些样本之后被划分为训练集、验证集以及测试集,经过LeNet-5网络学习边界测量电压值和电导率之间的非线性关系从而实现图像重建.将文中网络获取的重建结果与其他机器学习方法(BP神经网络、RBF神经网络)的结果进行比较,验证基于LeNet-5的网络应用于图像重建的有效性.
Image Reconstruction of Electrical Impedance Tomography Based on Conv-olutional Neural Network
The image reconstruction of electrical impedance tomography is a highly nonlinear and ill-posed problem,and the traditional image reconstruction method loses important information,which means it cannot achieve high accuracy and real-time imaging.In this paper,an electrical impedance tomography image reconstruction method based on convolutional neural network structure LeNet-5 is proposed.MATLAB and COMSOL were used to obtain samples with dif-ferent representative imaging features,and these samples were divided into training set,valida-tion set and test set.The LeNet-5 network is used to learn the nonlinear relationship between the boundary measurement voltage and conductivity to reconstruct images.The reconstruction re-sults obtained by the network in this paper were compared with the results obtained by other machine learning methods(backpropagation and radial basis function neural networks)to verify the effectiveness of the network based on LeNet-5.

electrical impedance tomographyconvolutional neural networkdeep learningim-age reconstruction

李少聪、张清河、郑国亮

展开 >

三峡大学计算机与信息学院,湖北宜昌 443002

湖北省水电工程智能视觉监测重点实验室,湖北宜昌 443002

电阻抗层析成像 卷积神经网络 深度学习 图像重建

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 19