首页|基于物联网技术的用户历史用电数据智能信息采集方法

基于物联网技术的用户历史用电数据智能信息采集方法

扫码查看
当前用户历史用电数据智能信息采集节点的设置多为独立式,数据采集的覆盖范围受限制,导致采集单元速率大幅度下降,为此提出对基于物联网技术的用户历史用电数据智能信息采集方法的设计与验证分析.根据当前的测试需求及标准,先明确历史用电数据采集覆盖范围,部署多层级传感采集节点,设计物联网用户历史用电数据智能信息采集模型,采用畸变数据自动筛选的方式来实现信息采集.测试结果表明:针对选定的6个测试周期,对比于传统正则自编码器及Optuna寻优用电数据智能信息采集测试组、传统B+搜索树算法用电数据智能信息采集测试组,物联网用电数据智能信息采集测试组的采集单元速率均可以达到8.5Mbps以上,说明在物联网技术的辅助下,当前所设计的用户历史用电数据智能信息采集方法更为高效,具有实际的应用价值.
Intelligent Information Collection Method for Historical Electricity Con-sumption Data of Users Based on Internet of Things Technology
Currently,the setting of intelligent information collection nodes for user historical e-lectricity data is mostly independent,and the coverage of data collection is limited,resulting in a significant decrease in the collection unit speed.Therefore,this paper proposes the design and validation analysis of an intelligent information collection method for user historical electricity data based on Internet of Things technology.Based on current testing requirements and stand-ards,first clarify the coverage of historical electricity data collection,deploy multi-level sensor collection nodes,design an intelligent information collection model for IoT user historical elec-tricity data,and use distorted data automatic filtering to achieve information collection.The test results show that for the selected 6 test cycles,compared to the traditional regular autoencoder and Optuna optimization electricity data intelligent information collection test group,the tradi-tional B+search tree algorithm electricity data intelligent information collection test group,the collection unit speed of the IoT electricity data intelligent information collection test group can all reach above 8.5Mbps,indicating that with the assistance of IoT technology,The currently designed intelligent information collection method for user historical electricity consumption da-ta is more efficient and has practical application value.

Internet of Things technologyIntelligent informationInformation collectionMul-tidimensional collection methods

党志慧

展开 >

国网朔州供电公司,山西 朔州 036000

物联网技术 智能信息 信息采集 多维采集方法

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 7