首页|基于CNN-LSTM模型和STM32单片机的水质监测与预测系统

基于CNN-LSTM模型和STM32单片机的水质监测与预测系统

扫码查看
研究设计了 一种水质监测与预测系统,旨在提高水质管理效率.为此,采用了基于CNN-LSTM模型的方法.该模型利用CNN提取水质传感器数据的空间特征,并将输出序列传递给LSTM网络,以捕捉时序性信息.这种结合CNN和LSTM的模型既保持了高效性又具有简单的结构,非常适合部署至STM32单片机,在实现传感器数据采集、STM32的人工智能处理、本地显示以及数据上传至乐为物联云平台的过程中,该设计可以提高水质管理的效率.
Water Quality Monitoring and Prediction System Based on CNN-LSTM Model and STM32 Microcontroller
A water quality monitoring and prediction system has been designed to improve the efficiency of water quality management.To this end,a method based on the CNN-LSTM model was adopted.This model utilizes CNN to extract spatial features from water quality sen-sor data and passes the output sequence to the LSTM network to capture temporal information.This model that combines CNN and LSTM not only maintains efficiency but also has a simple structure,making it very suitable for deployment on STM32 microcontrollers,In the process of implementing sensor data collection,artificial intelligence processing of STM32,local display,and data uploading to the Lewei IoT cloud platform,this design can improve the efficiency of water quality management.

CNNLSTMsingle-chip microcomputerwater qualityprediction

顾婕、朱爽、杨焕峥

展开 >

无锡商业职业技术学院,江苏无锡 214153

卷积神经网络 长短期记忆网络 单片机 水质 预测

江苏省职业院校学生创新创业培育计划(2023)

G-2023-1842

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 6