首页|基于权值共享的中朝神经机器翻译方法

基于权值共享的中朝神经机器翻译方法

扫码查看
针对低资源神经机器翻译,数据量不足,翻译效果不好的问题,提出采用权值共享的方法优化低资源神经机器翻译.首先,创建父模型,将爬取得到的数据进行处理,采用神经机器翻译模型进行训练;其次,创建统一的词典,确保子模型能够有效地利用父模型的词汇知识;最后,权值共享,子模型获得父模型的先验知识,为了验证所提方法的有效性进行实验对比,结果显示,权值共享模型翻译性能更好,译文的关键词及语义翻译完整,BLEU值较普通神经机器翻译模型提升了3.25.综上所述,通过采用迁移学习中的权值共享方法,我们成功地优化了低资源神经机器翻译问题,显著提高了翻译效果.这一方法对于解决低资源语言对的机器翻译问题具有重要的应用价值.
A Method for Chinese-Korean Neural Machine Translation Based on Weight Sharing
In addressing the challenges of low-resource neural machine translation,which are characterized by insufficient data and suboptimal translation performance,we propose the utili-zation of weight sharing as a method to optimize the translation process.Firstly,we create a parent model,process the crawled data,and train it using a neural machine translation model.Secondly,we create a unified dictionary to ensure that the child model can effectively utilize the vocabulary knowledge of the parent model.Finally,weight sharing is employed so that the child model can acquire prior knowledge from the parent model.The results showed that the weight-sharing model performed better in translation,with complete translation of key words and semantics.The BLEU score was improved by 3.25 compared to the ordinary neural ma-chine translation model.In summary,by employing weight sharing in transfer learning,we successfully optimized the problem of low-resource neural machine translation and significantly improved translation performance.This method has important application value for addressing machine translation problems for low-resource language pairs.

Chinese-Korean Neural Machine TranslationWeight SharingTransfer Learning

王琪

展开 >

长春金融高等专科学校,吉林长春 130124

中朝神经机器翻译 权值共享 迁移学习

吉林省教育厅项目

JJKH20220916KJ

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(5)
  • 4