首页|基于深度学习的废钢检测类别平衡策略和分组采样模块

基于深度学习的废钢检测类别平衡策略和分组采样模块

扫码查看
废钢的回收过程中,我们经常遇到种类繁多、类别数量不平衡等问题.鉴于此,本研究基于深度学习,提出了一种废钢检测方法,包括类别平衡策略(Class Balance)和分组采样模块(Multi Group Sampling).类别平衡策略旨在解决数据集中存在的类别分布不均衡问题,而分组采样模块通过促进形状和大小相似的不同类别废钢之间的相互学习.通过对模型结构和训练流程的优化,该方法在废钢数据集上展现了出色的性能.我们采用 rtmdet、yolov5 和 yolov8 进行了一系列对比实验,结果显示本研究提出的策略能够在不同模型上取得更优的废钢图像检测效果,mAP分别提高了3.2%、2.6%和3.1%.本研究的成果为废钢回收处理行业提供了一种新的方案,提升废钢回收的效率和质量,推动废钢回收自动化的发展.
Scrap Steel Detection Category Balancing Strategy and Group Sampling Module Based on Deep Learning
In the process of recycling scrap,we often encounter problems such as a wide variety of types and an imbalance in the number of categories.In view of this,based on deep learning,this study proposes a scrap detection method,including a class balance strategy and a multi group sampling module.The category balancing strategy aims to solve the problem of uneven category distribution in the dataset,and the group sampling module facilitates mutual learning between different categories of scrap of similar shape and size.By optimizing the model structure and training process,the method in this study shows excellent performance on the scrap dataset.We conducted a series of comparative experiments using rtmdet,yolov5 and yolov8,and the results showed that the proposed strategy could achieve better scrap image detection results on different models,with mAP increased by 3.2%,2.6%and 3.1%,respectively.The results of this study provide a new solution for the scrap recycling industry,improve the efficiency and quality of scrap recycling,and promote the development of scrap recycling automation.

Scrap Steel GradingObject Detectionyolov5yolov8rtmdet

魏西峰、许云峰

展开 >

河北科技大学信息科学与工程学院,河北石家庄 050018

废钢判级 目标检测 yolov5 yolov8 rtmdet

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(8)