首页|基于深度学习方法的YOLO目标检测综述

基于深度学习方法的YOLO目标检测综述

扫码查看
目标检测是计算机视觉中的一项重要任务,其目标是从图像或视频中检测出并定位感兴趣的目标对象.这与图像分类不同,目标检测不仅需要确定图像中是否存在特定对象,还需要准确地标定对象的位置.YOLO(You Only Look Once)是将目标检测问题转化为一个回归问题,从而实现了从端到端的一种检测方法.与传统的两阶段的目标检测算法相比,单阶段的目标检测算法在速度上有很大的提升,从而实现的速度与准确性的平衡.该文主要是对YOLO系列算法的网络结构以及相关改进进行了详细的阐述.首先是对YOLO算法基本思想进行相关阐述,然后对YOLO中相关网络架构进行的相关阐述,包括YOLO V1,YOLO V2,YOLO V3,YOLO V4,YOLO V5,以及 YOLOX YOLO V7,YOLO V8.
Overview of Yolo Object Detection Based on Deep Learning Methods
Object detection is a critical task in computer vision,aiming to detect and locate objects of interest in images or videos.Unlike image classification,object detection not only requires de-termining the presence of specific objects in an image but also accurately localizing their posi-tions.YOLO(You Only Look Once)transforms the object detection problem into a regression problem,thus providing an end-to-end detection approach.In comparison to traditional two-stage object detection algorithms,single-stage object detection algorithms significantly enhance speed,achieving a balance between speed and accuracy.This paper provides a detailed exposition of the network architectures of the YOLO series algorithms and their relevant improvements.It begins with an explanation of the fundamental ideas behind the YOLO algorithm,followed by discus-sions on the network architectures employed in YOLO,encompassing YOLO V1,YOLO V2,YOLO V3,YOLO V4,YOLO V5,as well as YOLOX YOLO V7,and YOLO V8.

Deep LearningConvolutional Neural NetworksObject DetectionYOLO

张新航、张雅茹、麻振华、茹慧英

展开 >

河北建筑工程学院,河北 张家口 075000

深度学习 卷积神经网络 目标检测 YOLO

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(8)