首页|基于组合模型的机场客流量预测方法研究

基于组合模型的机场客流量预测方法研究

扫码查看
为了应对由于无法有效预测机场旅客流量所带来的安全风险、服务质量下降以及资源配置不当等问题,文章结合机器学习和深度学习的方法,构建了SARIMA-CNN-LSTM组合模型来预测机场客流量.模型首先利用SARIMA能够处理数据中线性和季节性成分的特点对数据进行预测,但SARIMA无法充分拟合非线性或复杂成分,从而产生拟合序列和残差序列,单独使用LSTM对残差序列进行处理时效果不太好,因此模型采用CNN-LSTM结构来处理残差序列,该结构利用CNN提取残差序列的非线性等复杂特征并降低维度,使序列适应LSTM的输入要求,利用LSTM模型捕捉CNN处理后的序列的长期依赖关系并进行非线性建模和预测,得到CNN-LSTM对残差序列的预测结果.最后,模型将SARIMA和CNN-LSTM预测的结果进行组合得到最终的预测结果.实验结果表明,文章所构建的组合模型具有良好的客流量预测效果,有助于机场工作安全高效的进行.
Research onAirport Passenger Flow Forecasting Method Based on Combination Model
In order to deal with the security risks caused by the inability to effectively predict the passenger flow of the airport,the decline of service quality and the improper allocation of re-sources and other problems.This paper combines machine learning and deep learning methods to build a combined model of SARIMA-CNN-LSTM to predict airport passenger flow.The model first utilizes SARIMA's ability to process linear and seasonal components of the data to make predictions.However,SARIMA cannot adequately fit nonlinear or complex components,resulting in fitted sequences and residual sequences.However,the effect of using LSTM alone is not good,so the model adopts CNN-LSTM structure to deal with the residual sequence.The structure uses CNN to extract the nonlinear and other complex features of the residual sequence and reduce the dimension to make the sequence adapt to the input requirements of LSTM.The structure uses LSTM model to capture the long-term dependence relationship of the CNN-pro-cessed sequence,and carries out nonlinear modeling and prediction,and obtains the prediction re-sult of CNN-LSTM for residual sequence.Finally,the model combines the predicted results of SARIMA and CNN-LSTM to get the final predicted results.The experimental results show that the combined model constructed in this paper has a good passenger flow prediction effect,which is conducive to the safety and efficiency of airport work.

Airport passenger flow forecastSARIMA modelCNN modelLSTM model

江建霖

展开 >

西安石油大学,陕西西安 710065

机场客流量预测 SARIMA模型 CNN模型 LSTM模型

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(8)