首页|基于多尺度深度学习的B2C电商物流网络信息实时提取

基于多尺度深度学习的B2C电商物流网络信息实时提取

扫码查看
传统信息提取方法难以应对大规模的物流数据,导致提取的信息噪声较多.因此,提出基于多尺度深度学习的B2C电商物流网络信息实时提取.挖掘B2C电商物流网络信息,预处理收集到的原始电商物流网络信息.利用多尺度深度学习对预处理后的电商物流信息进行特征重构,多尺度深度学习捕获不同尺度的特征,生成新的特征矢量提取出重构后的电商物流网络信息.实验结果证明,所研究方法在提取电商物流网络信息时,噪声含量较少,提取效果较好.
Real-time Extraction of B2C E-commerce Logistics Network Information Based on Multi-scale Deep Learning
Traditional information extraction methods are difficult to deal with large-scale logis-tics data,resulting in more information noise.Therefore,the real-time extraction of B2C e-com-merce logistics network information based on multi-scale deep learning is proposed.Mining B2C e-commerce logistics network information and preprocessing the collected original e-commerce logistics network information.Multi-scale deep learning is used to reconstruct the features of pre-processed e-commerce logistics information.Multi-scale deep learning captures the features of different scales and generates new feature vectors to extract the reconstructed e-commerce lo-gistics network information.The experimental results show that the research method has less noise content and better extraction effect when extracting c-commerce logistics network infor-mation.

multi-scale deep learningB2C e-commerce logisticsnetwork informationreal-time extraction

侯颖

展开 >

河南医药健康技师学院,河南 开封 475000

多尺度深度学习 B2C电商物流 网络信息 实时提取

2024

长江信息通信
湖北通信服务公司

长江信息通信

影响因子:0.338
ISSN:2096-9759
年,卷(期):2024.37(8)